Radiologic Science for Technologists Physics Biology and Protection 11th Edition Bushong Test Bank

Full Download: http://alibabadownload.com/product/radiologic-science-for-technologists-physics-biology-and-protection-11th-edi

Chapter 02: The Structure of Matter Bushong: Radiologic Science for Technologists: Physics, Biology, and Protection, 11th Edition

MULTIPLE CHOICE

- 1. The term "atom" was first used by the _____.
 - a. Ethiopians
 - b. British
 - c. Greeks
 - d. Romans

ANS: C The term "atom" was first used by the Greeks

DIF: Moderate REF: p. 27 OBJ: Relate the history of the term "atom."

- 2. The first person to describe an element as being composed of identical atoms was
 - a. J. J. Thomson
 - b. John Dalton
 - c. Dmitri Mendeleev
 - d. Niels Bohr

ANS: B

The first person to describe an element as being composed of identical atoms was John Dalton.

DIF: Moderate REF: p. 27 OBJ: Name the first person to describe an element as being composed of identical atoms.

- 3. The smallest particle that has all the properties of an element is a(n) ______.
 - a. neutron
 - b. proton
 - c. electron
 - d. atom

```
ANS: D
```

The smallest particle that has all the properties of an element is an atom.

DIF: Moderate REF: p. 28 OBJ: Define the atom.

- 4. The periodic table of the elements was developed by ______ in the late 19th century.
 - a. Bohr
 - b. Rutherford
 - c. Mendeleev
 - d. Roentgen

ANS: C The Periodic Table was developed by Mendeleev. DIF: Moderate REF: p. 28

OBJ: Name the person who developed the periodic table of the elements.

- 5. Rutherford's experiments in 1911 showed that the atom was composed of
 - a. electrons with well-defined orbits
 - b. a nucleus with an electron cloud
 - c. electrified plum pudding
 - d. a ball of hooks and eyes

ANS: C

Rutherford's experiments in 1911 showed that the atom was composed of a nucleus with an electron cloud.

DIF: Moderate REF: p. 29 OBJ: Relate the history of the Rutherford model of the atom.

- 6. A positively charged nucleus surrounded by negatively charged electrons in well-defined orbits is the _____ model of the atom.
 - a. Bohr
 - b. Thomson
 - c. Rutherford
 - d. Dalton

ANS: A

A positively charged nucleus surrounded by negatively charged electrons in well-defined orbits is the Bohr model of the atom.

DIF: Moderate REF: p. 29 OBJ: Identify the structure of the Bohr model of the atom.

7. What are the fundamental particles of an atom?

- a. Quark, positron, negatron
- b. Nucleon, electron, proton
- c. Proton, neutron, quark
- d. Proton, electron, neutron
- ANS: D

The fundamental particles of an atom are the proton, electron, and neutron.

DIF: Easy REF: p. 29 OBJ

OBJ: Identify the fundamental particles of an atom.

- 8. The chemical element is determined by the number of ______ in the atom.
 - a. protons
 - b. electrons
 - c. neutrons
 - d. nucleons

ANS: A

The chemical element is determined by the number of protons in the atom.

DIF: Moderate REF: p. 30 OBJ: Describe how a chemical element is determined.

- 9. An atom in a normal state has an electrical charge of _____.
 - a. one
 - b. zero
 - c. positive
 - d. negative

ANS: B

An atom in a normal state has an electrical charge of zero.

DIF: Moderate REF: p. 31

- OBJ: Describe the electrical charge of an atom in a normal state.
- 10. The binding energies, or energy levels, of electrons are represented by their _____.
 - a. atomic numbers
 - b. atomic mass units
 - c. shells
 - d. isotopes

ANS: C

The binding energies, or energy levels, of electrons are represented by their shells.

DIF: Moderate REF: p. 31

- OBJ: Describe binding energies or energy levels of electrons.
- 11. When an atom has the same number of protons as another, but a different number of neutrons, it is called an _____.
 - a. isomer
 - b. isobar
 - c. isotone
 - d. isotope

ANS: D

When an atom has the same number of protons as another, but a different number of neutrons, it is called an isotope.

DIF: Difficult REF: p. 34 OBJ: Describe an isotope.

- 12. When atoms of various elements combine, they form ______.
 - a. isotopes
 - b. compounds
 - c. molecules
 - d. ions

ANS: C

When atoms of various elements combine, they form molecules.

DIF: Moderate REF: p. 36 OBJ: Describe a molecule.

- 13. An atom that loses or gains one or more electrons is a(n) _____.
 - a. ion
 - b. molecule

- c. isotope
- d. isomer

ANS: A

An atom that loses or gains one or more electrons is an ion.

DIF: Moderate REF: p. 31 OBJ: Define an ion.

14. The maximum number of electrons that can exist in an electron shell is calculated with the formula _____.

- a. 2n
- b. $2n^2$
- c. 2/n
- d. $2/n^2$

ANS: B

The number of electrons in an electron shell is calculated with the formula $2n^2$.

DIF: Difficult REF: p. 32 OBJ: Identify the formula for the maximum number of electrons that can exist in an electron shell.

- 15. A neutral atom has the same number of _____ and electrons.
 - a. quarks
 - b. neutrinos
 - c. neutrons
 - d. protons

ANS: D

A neutral atom has the same number of protons and electrons.

DIF: Easy REF: p. 34

OBJ: Identify the formula for the maximum number of electrons that can exist in an electron shell.

- 16. The innermost electron shell is symbolized by the letter _____.
 - a. J
 - b. K
 - c. L
 - d. M

ANS: B

The innermost electron shell is symbolized by the letter K.

DIF: Moderate REF: p. 32

- OBJ: Recognize the symbol for the innermost electron shell.
- 17. The shell number of an atom is called the ______.
 - a. alpha particle
 - b. chemical element
 - c. principal quantum number
 - d. half-life number

ANS: C

The shell number of an atom is called the principal quantum number.

18. The atomic number of an element is symbolized by the letter _____.

- a. A
- b. X
- c. Z
- d. n
- ANS: C

The atomic number of an element is symbolized by the letter Z.

DIF: Moderate REF: p. 34 OBJ: Identify symbol for the atomic number of an element.

- 19. Aluminum has an atomic number of 13. How many protons does it have?
 - a. 13
 - b. 26
 - c. 27
 - d. None of the above

ANS: A

The atomic number equals the number of protons in an atom.

DIF: Moderate REF: p. 34

OBJ: Identify the number of protons on an atom based on its atomic number.

20. Two identical atoms which exist at different energy states are called ______.

- a. isotopes
- b. isomers
- c. isotones
- d. isobars

ANS: B

Two identical atoms which exist at different energy states are called isomers.

DIF: Moderate REF: p. 36 OBJ: Define an isomer.

- 21. The atomic number of molybdenum is 42 and the atomic mass number is 98. How many neutrons does it have?
 - a. 42
 - b. 98
 - c. 21
 - d. 56

ANS: D The number of neutrons is equal to A–Z.

DIF: Difficult REF: p. 36 OBJ: Identify the number of neutrons in an atom based on its atomic number and atomic mass number.

22. A chemical compound is any quantity of ______.

Radiologic Science for Technologists Physics Biology and Protection 11th Edition Bushong Test Bank

Full Download: http://alibabadownload.com/product/radiologic-science-for-technologists-physics-biology-and-protection-11th-editional-and-protectional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protection-11th-editional-and-protectional-and-protectional-and-protectional-and-protectional-and-protectional-and-protection-11th-editional-and-protec

_•

	 a. one type of atom b. one type of molecule c. two types of molecules d. two or more types of atoms ANS: B A chemical compound is any quantity of one type of molecule. 					
	DIF:	Difficult	REF:	p. 36	OBJ:	Describe a compound.
23.	a. el b. po c. pr	ng beta emissi ectrons ositrons rotons eutrons	on, an a	atom releas	es	
	ANS: A During beta emission, an atom releases electrons.					
	DIF:	Moderate	REF:	p. 37	OBJ:	Describe beta emission.
24.	 The only difference between x-rays and gamma rays is their a. energy b. size c. origin d. name ANS: C The only difference between x-rays and gamma rays is their origin 					
		Moderate Explain the d		*	-rays and g	gamma rays.
25.	a. be b. x- c. ga	eta particle -ray amma ray pha particle	the lea	ast penetrat	ing form	of ionizing radiation.
ANS: D The alpha particle is the least penetrating						of ionizing radiation.
	DIF: Moderate REF: p. 41 OBJ: Name the least penetrating form of ionizing radiation.					