Quality Control 8th Edition Besterfield Solutions M

SCONTRACTOR SCONT Full Download: http://alibabadownload.com/product/quality-control-8th-edition-besterfield-solutions-manual/

Online Instructor's Manual to accompany

Quality Control

Eighth Edition

Dale H. Besterfield Ph.D., P.E.

Upper Saddle River, New Jersey Columbus, Ohio

This sample only, Download all chapters at: alibabadownload.com

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Copyright © 2009 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall[™] is a trademark of Pearson Education, Inc. **Pearson**[®] is a registered trademark of Pearson plc **Prentice Hall**[®] is a registered trademark of Pearson Education, Inc.

Instructors of classes using Besterfield, *Quality Control*, 8th ed., may reproduce material from the instructor's manual for classroom use.

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-500097-7 ISBN-10: 0-13-500097-1

CONTENTS

	Page
Preface	iv
Major Changes to the Eighth Edition	1
Typical Course Outline	3
Solution to Exercises	
Chapter 3	4
Chapter 4	9
Chapter 5	30
Chapter 6	48
Chapter 7	54
Chapter 8	61
Chapter 9	70
Chapter 10	80
Chapter 11	90
Test Questions	95
Test Problems	115
Answers to Test Problems	124

PREFACE

This manual has been published to simplify the instructor's tasks of developing learning activities and evaluating performance. It is based on the experience of the author and is meant to serve as a guide. Each instructor will need to modify this information for the particular course objectives and the ability level of the students.

For those teachers who are familiar with the *Seventh Edition* of the textbook, information on the major changes to the *Eighth Edition* is provided. This information should simplify the transition to the latest edition.

A typical course outline for a three-semester hour course is shown on Page 3. The learning activities are based on 45 class meetings of 50 minutes each. Since it is difficult to cover all of the material in a typical three-semester hour course, this outline concentrates on the quantifiable aspects of quality control. The instructor may wish to place greater emphasis on the first three chapters, which are non-quantifiable and build a transition to the statistical aspects of quality..

Solutions for the problems start on Page 4. The author has found it advantageous to post the solutions. This action allows students to determine if their methods and answer are correct.

Typical multiple-choice test questions are given and an asterisk indicates the correct answer. These questions can be modified in a number of ways depending on the creativity of the instructor. Answers to test problems are also given. Since the tables in the body of the text and in the Appendix are needed to solve the problems, an open-book type examination should be considered. The instructor may also consider providing copies of the tables and using a closed-book format. Regardless, the multiple-choice questions can be given in the closed-book format. The author has found that allowing the students 3x5 cards for formulas and other information is a great learning experience.

General

- 1. Problems to exercises.
- 2. Objectives added to each chapter.
- 3. Where appropriated changed product to product or service.
- 4. Where appropriated changed company to organization
- 5. Footnotes are provided for more advanced topics.
- 6. Changed exercise notation to include the chapter such as 1-1, ..., 1-6; 2-1, ..., 2-8, etc.

Chapter 1

- 1. Added ASQ definition of quality.
- 2. Changed slide projector to plasma TV in Table 1-1.
- 3. Modified Figure 1-1.
- 4. Added exercises.

Chapter 2

- 1. Added Lean to Figure 2-1 along with other modifications.
- 2. Added time line to annual quality improvement program.
- 3. Added that performance measures should not be used as a "whip."
- 4. Clarified Figure 2-7 with a footnote.
- 5. Revised Figure 2-8 and Table2-4

Chapter 3

1. Moved scatter diagram to Chapter 4

Chapter 4

- 1. Changed weekly wage numbers for example on range
- 2. Added coefficient of variation to other measures
- 3. Added least squares calculations to scatter diagram.

Chapter 5

- 1. Added additional statistical information to six sigma.
- 2. Added exponential moving average chart with exercises.
- 3. Added ARL

Chapter 6

1. Added footnotes as links to recent literature on T^2 multivariate chart and deviation chart.

Chapter 7

- 1. Added mean and standard deviation formulas to hypergeometric, binomial, and Poisson distributions.
- 2. Added exercises 17 and 18 and renumbered the rest.
- 3. Eliminated examples and exercises concerning approximation techniques because they are obsolete.

Chapter 8

1. Added information on sample size and confidence limits.

Chapter 9

1. Changed meaning of AQL

Chapter 10

1. Latest standards revision.

Chapter 11

1. Added a section on test design with footnotes to advanced material.

Chapter 12

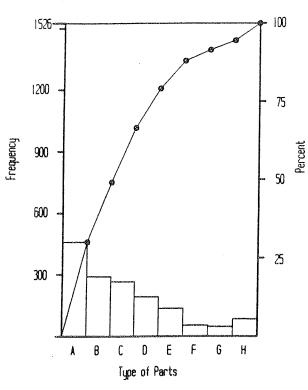
1. Added footnotes to information on use of these techniques for innovative design.

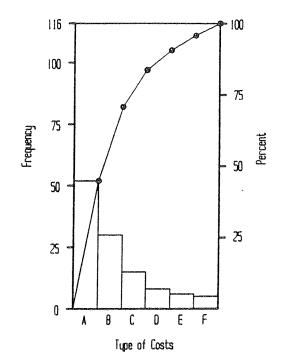
TYPICAL COURSE OUTLINE

Meeting	Topic	Chapter
1	Introduction to Quality	Ì
2 and 3	TQM - Principle practices	2
4	TQM - Tools & Techniques	3
5 thru 9	Fundamentals of Statistics	4
10 thru 15	Control Charts for Variables	5
16	Examination I	
17 and 18	Additional SPC Techniques for Variables	6
19 thru 23	Fundamentals of Probability	7
24 thru 28	Control Charts for Attributes	8
29	Examination II	
30 thru 39	Lot-by-Lot Acceptance Sampling by Attributes	9
40 thru 43	Acceptance Sampling Plan Systems	10
44	Reliability (non quantitative)	11
45	Examination III	

Chapter 3. TQM-TOOLS AND TECHNIQUES

1. Replacement Parts: (6-month period)


prace		Frequency	Percent	Cumulative Frequency	Cumulative Percent
			A	and the second sec	
Α.	front burners	460	. 30	460	. 30
Β.	rear burners	290	.19	750	. 49
C.	oven regulators	265	.17	1015	.66
D.	oven door	193	.13	1208	. 79
Ε.	burner control	135	. 09	1343	. 88
F.	timer	53	.03	1396	.91
G.	drawer rollers	46	. 03	1442	. 94
Н.	All others	84		1526	1.00
		1526	1.00		


 Downtime Costs: (3-month period) in thousands of dollars

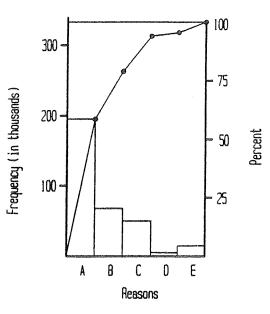
				Cumulative	Cumulative
		Frequency	Percent	Frequency	<u>Percent</u>
Α.	lost cooling	52	. 45	52	.45
Β.	back pressure reg.	30	. 26	82	.71
С.	adjust feed worm	15	.13	97	. 84
D.	valve replacement	8	.07	105	.91
Ē.	jam copperhead	6	.05	111	. 96
F.	All others	5	.04	116	1.00
- •		116	1.00		

ţ

(2)

Caus	e of accident	in percent
a.	right-of-way violation	30.1
b.	driving too fast for condition	28.1
C.	following too closely	8.1
d.	improper turn	3.6
e	driving left of center	3.3
f.	improper overtaking	3.2
g.	all other	23.6
-		100.0

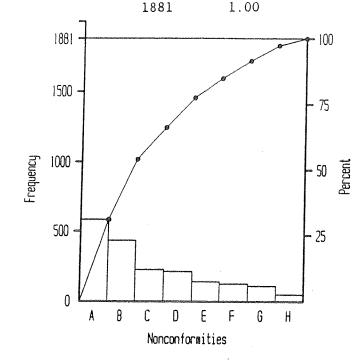
4. Reason for Shipment Return: (quarter) in thousands


3

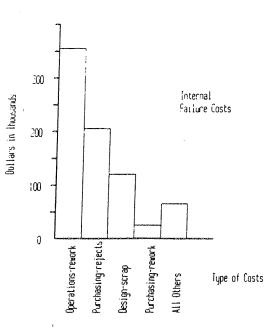
(3)

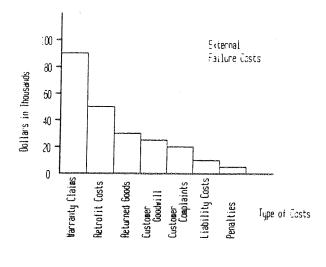
				Cumulative	Cumulative
		Frequency	Percent	Frequency	<u>Percent</u>
٨	refused	195	. 585	195	. 59
А. В.	wrong address	68	. 20	263	. 79
р. С	wrong selection	50	.15	313	.94
	order canceled	5	.02	318	.96
D.	All other	15	.045	333	1.00
Ε.	ALL OTHER	333	1.00	200	

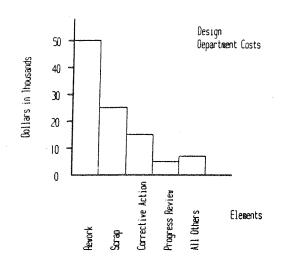
(4)

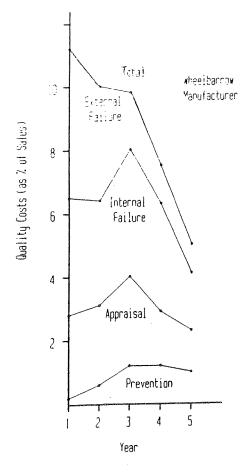

30.0 30.0 20.0 0.0 A B C D E F G Causes

Chapter 3


5. Paint Nonconformities: (1-month)

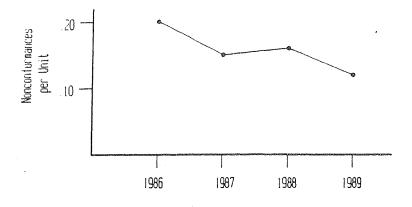

				Cumulative	Cumulative
		Frequency	Percent	Frequency	<u>Percent</u>
Α.	light spray	582	.31	582	. 31
В.	runs	434	. 23	1016	. 54
Ĉ.	drips	227	.12	1243	. 66
D.	blisters	212	.11	1455	. 77
Ε.	splatter	141	.07	1596	. 84
F.	bad paint	126	.07	1722	. 91
G.	overspray	109	.06	1831	.97
H.	All others	50	.03	1881	1.00
		1001	1 00		


7,



6

9.


8.

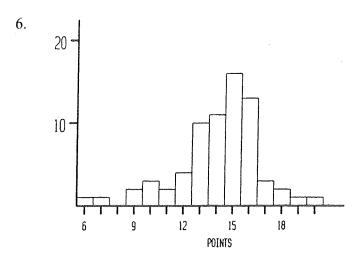
an a sa ang taon ang taon

> . .

骖

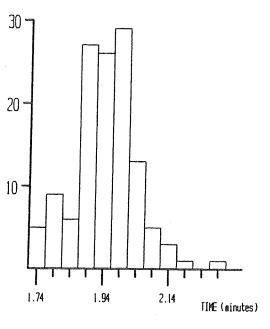
There is a downward trend over the four years.

11-13. See pages 79-82 for examples.

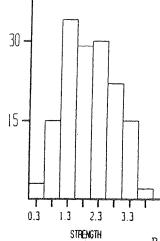

Chapter 4. FUNDAMENTALS OF STATISTICS


1. 0.86, 0.63, 0.15, 0.48

2, 3, Number	Boundaries	Precision	g.p.e.	r.e.
(a) 8.24	8.235 < 8.24 < 8.45	0.01	0.005	0.0006
(b) 522	521.5 < 522 < 522.5	1	0.5	0.001
(c) 6.3 x 10	625 < 630 < 635	10	5	0.002
(d) 0.02	0.015 < 0.02 < 0.025	0.01	0.005	0.3


4. 2.84 x 10², 22, 0.64, 0.8937, 0.9

5. 66.4, 379.1, 5, 4.652, 6.2
$$\times$$
 10⁴



8.	Cell	Cell	
0.	Boundaries	Midpoint	Frequency
	1.72-1.76	1.74	5
	1.77-1.81	1.79	9
	1.82-1.86	1.84	6
	1.87-1.91	1.89	27
	1.92-1.96	1.94	26
	1.97-2.01	1.99	29
	2.02-2.06	2.04	13
	2.07-2.11	2.09	5
	2.12-2.16	2.14	3
	2.17-2.21	2.19	1
	2.22-2.26	2.24	0
	2.27-2.31	2.29	1

9.	Cell Boundaries	Cell Midpoínts	Frequency
	0.05-0.54	0.3	3
	0.55-1.04	0.8	15
	1.05-1.54	1.3	34
	1.55-2.04	1.8	29
	2.05-2.54	2.3	30
	2.55-3.04	2.8	22
	3.05-3.54	3.3	15
	3.55-4.04	3.8	2

10.

0.			STRENGTH	Relative
		Relative	Cumulative	Cumulative
Scores	Freq.	Freq.	Freq.	Freq.
6	1	1/70 = 0.014	0+1 = 1	1/70 = 0.014
7	1	1/70 = 0.014	1+1 = 2	2/70 = 0.029
8	0	0/70 = 0	2+0 = 2	2/70 = 0.029
9	2	2/70 = 0.029	2+2 = 4	4/70 = 0.057
10	3	3/70 = 0.043	4+3 = 7	7/70 = 0.100
11	2	2/70 = 0.029	7+2 = 9	9/70 = 0.129
12	4	4/70 = 0.057	9+4 = 13	13/70 = 0.186
13	10	10/70 = 0.143	13+10 = 23	23/70 = 0.329
14	11	11/70 = 0.157	23+11 = 34	34/70 = 0.486
15	16	16/70 = 0.229	34 + 16 = 50	50/70 = 0.714
16	13	13/70 = 0.186	50+13 = 63	63/70 = 0.900
17	3	3/70 = 0.043	63+3 = 66	66/70 = 0.943
18	2	2/70 = 0.029	66+2 = 68	68/70 = 0.971
19	1	1/70 = 0.014	68+1 = 69	69/70 = 0.986
20	1	1/70 = 0.014	69+1 = 70	70/70 = 1.000
	70	1.00		

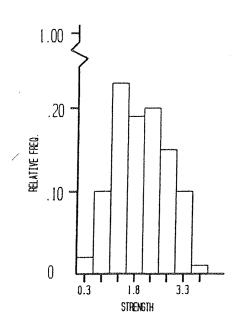
Graph not shown, but similar to Problem 13

11.

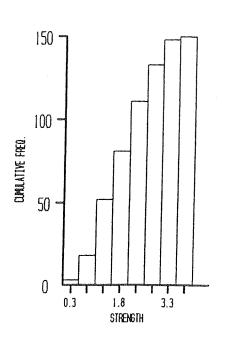
		Relative	Cumulative	Cumulative
Weights	Freq.	Freq.	Freq.	Freq.
5.94	1	1/110 = 0.9%	0+1 = 1	1/110 = 0.9%
		•		•
5.95	2	2/110 = 1.8	1+2 = 3	3/110 = 2.7
5.96	4	4/110 = 3.6	3+4 = 7	7/110 = 6.4
5.97	8	8/110 = 7.3	7+8 = 15	15/110 = 13.6
5.98	16	16/110 = 14.5	15 + 16 = 31	31/110 = 28.2
5.99	24	24/110 = 21.8	31+24 = 55	55/110 = 50.0
6.00	20	20/110 = 18.2	55+20 = 75	75/110 = 68.2
6.01	17	17/110 = 15.5	75+17 = 92	92/110 = 83.6
6.02	13	13/110 = 11.8	92+13 = 105	105/110 = 95.4
6.03	3	3/110 = 2.7	105+3 = 108	108/110 = 98.2
6.04	1	1/110 = 0.9	108+1 = 109	109/110 = 99.1
6.05	1	1/110 = 0.9	109+1 = 110	110/110 = 100.0%
	$\overline{110}$	99.9%		

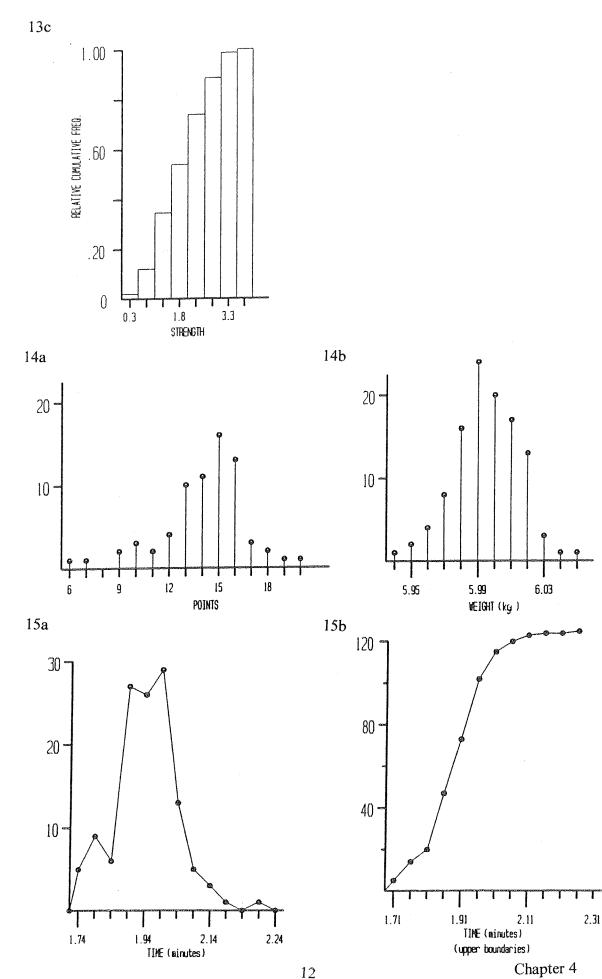
Graph not shown, but similar to Problem 13

Relative


12. Cell <u>Midpoint</u>	Freq.	Relative Freq.	Cumulative Freq.	Relative Cumulative Freq.
1.74	5	5/125 = 0.040	0+5 = 5	5/125 = 0.040
1.79	9	9/125 = 0.72	5+9 = 14	14/125 = 0.112
1.84	6	6/125 = 0.048	14+6 = 20	20/125 = 0.160
1.89	27	27/125 = 0.216	20+27 = 47	47/125 = 0.376
1.94	26	26/125 = 0.208	47 + 26 = 73	73/125 = 0.584
1.99	29	29/125 = 0.232	73+29 = 102	102/125 = 0.816
2.04	13	13/125 = 0.104	102+13 = 115	115/125 = 0.920
2.09	5	5/125 = 0.040	115+5 = 120	120/125 = 0.960
2.14	3	3/125 = 0.024	120+3 = 123	123/125 = 0.984
2.19	1	1/125 = 0.008	123+1 = 124	124/125 = 0.992
2.24	0	0/125 = 0	124+0 = 124	124/125 = 0.992
2.29	1	1/125 = 0.008	124+1 = 125	125/125 = 1.000
	125	1.000		

Graph not shown, but similar to Problem 13


13


13. Cell <u>Midpoint</u>	Freq.	Relative Freq.	Cumulative Freq.	Relative Cumulative Freq.
0.3	3	3/150 = 0.020	0+3 = 3	3/150 = 0.020
0.8	15	15/150 = 0.100	3+15 = 18	18/150 = 0.120
1.3	34	34/150 = 0.227	18+34 = 52	52/150 = 0.347
1.8	29	29/150 = 0.193	52+29 = 81	81/150 = 0.540
2.3	30	30/150 = 0.200	81 + 30 = 111	111/150 = 0.740
2.8	22	22/150 = 0.147	111+22 = 133	133/150 = 0.888
3.3	15	15/150 = 0.100	133 + 15 = 148	148/150 = 0.987
3.8	2	2/150 = 0.013	148+2 = 150	150/150 = 1.000
	150	1.000		

13a

13b

$$= (3) (3320) + (2) (3180) 3 + 2$$

Chapter 4

13

16a

22.
$$\overline{\chi}_{w} = \Sigma w \overline{\chi} / \Sigma w$$

= $\frac{(24) (1.75) + (18) (1.79) + (29) (1.68)}{24 + 18 + 29}$
= 1.73 m
23. a. 8, 11, 15, 18, 22; Md = 15
b. 28, 33, 35, 36, 38, 43; Md = $\frac{35 + 36}{2} = 35.5$
24. a. Md = L $\left(\frac{n}{2} - cf}{f}\right)$ i = 1.915 $\left(\frac{125}{2} - 47\right)$ 0.05 = 1.94
b. Md = = 1.55 $\left(\frac{150}{2} - 52\right)$ 0.5 = 1.95
c. Md = = 90 $\left(\frac{206}{2} - 77\right)$ 9 = 95 db
d. Md = = 4.0 $\left(\frac{65}{2} - 15\right)$.3 = 4.3
e. Md = = 1.60 $\left(\frac{88}{2} - 39\right)$ 0.3 = 1.73
f. Md = = 1450 $\left(\frac{72}{-2} - 19\right)$ 300 = 1716
25. 55, none, 14 and 17
26. 15, 5.99, 1.99, 1.3, 94, 4.1
27. a. R = H - L = 25 - 14 = 11
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
b. R = = 45 - 39 = 6
c. R = H - L = 20 - 6 = 14
c. R = H - L = 20 - 6 = 14
c. R = H - L = 20 - 6 = 14
c. R = H - L = 20 - 6 = 14
c. R = 0.011
28. s = $\sqrt{\frac{n\Sigma \chi^2 - (\Sigma \chi)^2}{n(n-1)}} = \sqrt{\frac{5(7152350) - (5980)^2}{5(5-1)}} = 8.2 \text{ vib/sec}$
29. s = $\sqrt{\frac{4(0.024) - (.308)^2}{4(4-1)}} = 0.004 \text{ mm}$

Chapter 4

30.

point	Freq.			
<u>(x)</u>	<u>(f)</u>	(f_X)	(f_x^2)	$\mathbf{s} = \sqrt{\frac{n \sum f X^2 - (\sum f X)^2}{n(n-1)}}$
.5	1	.5	0.3	1 1(11-1)
.8	16	12.8	10.2	88(256.2) (141.5)2
1.1	12	13.2	14.5	$=\sqrt{\frac{88(256.2)-(141.5)^2}{88(88-1)}}$
1.4	10	14.0	19.6	V 88(88-1)
1.7.	12	20.4	34.7	=.57%
2.0	18	3 6.0	72.0	
2.3	16	36.8	84.б	
2.6	3	7.8	20.3	
	88	141.5	256.2	

31a. Mid-point

14 2 2

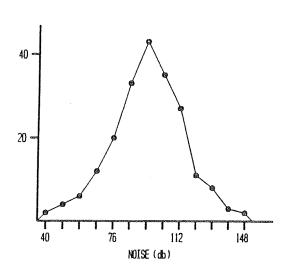
porne	
$ \begin{array}{c} (x) \\ 0.3 \\ 0.8 \\ 1.3 \\ 1.8 \\ 2.3 \\ 2.8 \\ 2.8 \end{array} $	
3.3 3.8	

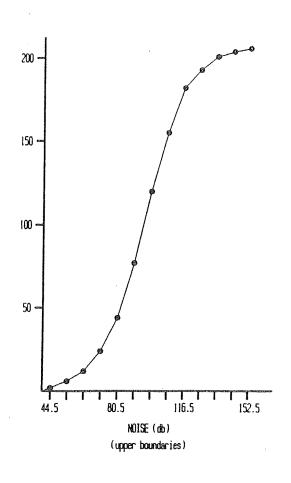
nt	Freq.		2
)	<u>(f)</u>	(f_{χ})	(fx^2)
3	3	0.9	0.27
8	15	12.0	9.60
3	34	44.2	57.46
3	29	52.2	93.96
3	30	69.0	158.70
3	22	61.6	172.48
3	15	49.5	163.35
3	2	7.6	<u> 28.88</u>
	150	297.0	684.70

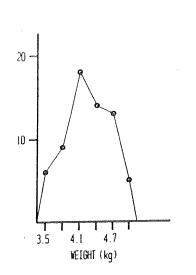
$\mathbf{s} = \sqrt{\frac{\mathbf{n} \sum}{\mathbf{n}}}$	$\frac{(f X^2 - (\sum f X)^2)}{n(n-1)}$
$=\sqrt{\frac{150}{150}}$	(684.7)-(297.0) ² 150(150 - 1)
= 0.8	

31b	Mid-

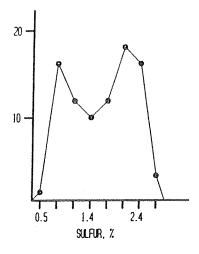
point	Freq.		•	
(x) 148 139 130 121 112	<u>(f)</u> 3 8 11 27	$ (f_{\chi}) 296 417 1,040 1,331 3,024 $	$\frac{(f\chi^2)}{43,808}$ 57,963 135,200 161,051 338,688	$\mathbf{s} = \sqrt{\frac{n \sum f X^2 - (\sum f X)^2}{n(n-1)}}$
103 94 85	35 43 33	3,605 4,042 2,805	371,315 379,948 238,425	$\frac{206(1,928,774) - (19,508)^2}{206(1,928,774) - (19,508)^2}$
76 67 58 49 40	20 12 6 4 2	1,520 804 348 196 80	115,520 53,868 20,184 9,604 <u>3,200</u>	$= \sqrt{206(206-1)}$ = 20 db
	206	19,508	1,928,774	

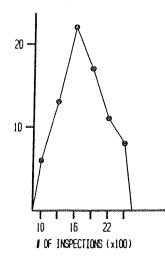

32. Mid-

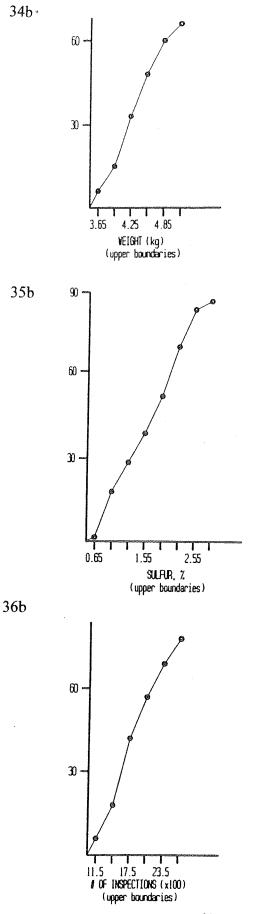

point (χ)	Freq. (f)	(f _X)	(f _X ²)
1000	6	6000	$6.00 \times 10^{\circ}$
1300	13	16900	$21.97 \times 10^{\circ}_{c}$
1600	22	35200	$56.32 \times 10^{\circ}_{c}$
1900	17	32300	$61.37 \times 10_6^{\circ}$
2200	11	24200	$53.24 \times 10^{\circ}_{6}$
2500	8	20000	50.00×10^{6}
	77	134.6×10^{-5}	248.9 x 10 ⁰


 $\overline{\chi} = \Sigma f \chi / n = 134.6 \times 10^3 / 77 = 1748 \text{ inspections}$ $s = \sqrt{\frac{n\Sigma f \chi^2 - (\Sigma f \chi)^2}{n(n-1)}} = \sqrt{\frac{77(248.9 \times 10^6) - (134.6 \times 10^3)^2}{77(77 - 1)}} = 423$

33b







34a

Chapter 4

37.	Cell Mid-		Relative	Cumulative	Relative Cumulative
	<u>point</u> 40 58 67 76	Freq. 2 4 6 12 20	Freq. 2/206 = 0.010 4/206 = 0.019 6/206 = 0.029 12/206 = 0.058 20/206 = 0.097	Freq. 0+2 = 2 2+4 = 6 6+6 = 12 12+12 = 24 24+20 = 44	Freq. 2/206 = 0.010 6/206 = 0.029 12/206 = 0.058 24/206 = 0.117 44/206 = 0.214
	85 94 103 112 121	33 43 35 27 11	33/206 = 0.160 43/206 = 0.209 35/206 = 0.170 27/206 = 0.131 11/206 = 0.053	44+33 = 77 $77+43 = 120$ $120+35 = 155$ $155+27 = 182$ $182+11 = 193$	77/206 = 0.374 120/206 = 0.583 155/206 = 0.752 182/206 = 0.883 193/206 = 0.937
	130 139 148	$ \frac{8}{2} \frac{2}{206} $	8/206 = 0.039 3/206 = 0.015 2/206 = 0.010 1.000	193+8 = 201 201+3 = 204 204+2 = 206	201/206 = 0.976 204/206 = 0.990 206/206 = 1.000
38.	Cell Mid- point	Freq.	Relative Freq.	Cumulative Freq.	Relative Cumulative Freq.
	3.5 3.8 4.1 4.4 4.7 5.0	$ \begin{array}{r} 6 \\ 9 \\ 18 \\ 14 \\ 13 \\ \underline{5} \\ \overline{65} \end{array} $	6/65 = 0.092 $9/65 = 0.138$ $18/65 = 0.277$ $14/65 = 0.215$ $13/65 = 0.200$ $5/65 = 0.077$ 0.999	0+6 = 6 6+9 = 15 15+18 = 33 33+14 = 47 47+13 = 60 60+5 = 65	6/65 = 0.092 15/65 = 0.231 33/65 = 0.508 47/65 = 0.723 60/65 = 0.923 65/65 = 1.000
39.	Cell Mid- point 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6	Freq. 1 16 12 10 12 18 16 <u>3</u> 88	Relative Freq. 1/88 = 0.011 16/88 = 0.182 12/88 = 0.136 10/88 = 0.136 10/88 = 0.136 18/88 = 0.205 16/88 = 0.182 3/88 = 0.034 1.000	Cumulative Freq. 0+1 = 1 1+16 = 17 17+12 = 29 29+10 = 39 39+12 = 51 51+18 = 69 69+16 = 85 85+3 = 88	Relative Cumulative Freq. 1/88 = 0.010 17/88 = 0.156 29/88 = 0.330 39/88 = 0.443 51/88 = 0.580 69/88 = 0.784 85/88 = 0.966 88/88 = 1.000
40.	Cell Mid- point 1000 1300 1600 1900 2200 2500	Freq. 6 13 22 17 11 8 77	Relative Freq. 6/77 = 0.078 13/77 = 0.169 22/77 = 0.286 17/77 = 0.221 11/77 = 0.143 8/77 = 0.104 1.001	Cumulative Freq. 0+6 = 6 6+13 = 19 19+22 = 41 41+17 = 58 58+11 = 69 69+8 = 77	Relative Cumulative Freq. 6/77 = 0.078 19/77 = 0.247 41/77 = 0.532 58/77 = 0.753 69/77 = 0.896 77/77 = 1.000

41a <u>χ</u>	f	$(\chi_1 - \overline{\chi})$	$f(\chi_i - \overline{\chi})^3$	$\frac{f(\chi_i - \overline{\chi})^4}{4}$
6	1	-8.13	-537.37	4,368.80
7	1	-7.13	-362.47	2,584.39
8	0	-6.13	0	0
9	- 2	-5.13	-270.01	1,385.16
10	3	-4.13	-211.33	872.81
11	2	-3.13	- 61.33	191.96
12	4	-2.13	- 38.65	82.33
13	10	-1.13	- 14.43	16.30
14	11	-0.13	- 0.02	0
15	16	0.87	10.54	9.17
16	13	1.87	85.01	158.97
17	3.	2.87	70.92	203.54
18	2	3.87	115.92	448.62
19	1	4.87	115.50	562.49
20	_1	5.87	_202.26	1,187.28
	70		-895.46	12,071.82

 $\overline{\chi} = 14.13$ s = 2.53 $a_3 = \frac{\Sigma f(\chi_1 - \overline{\chi})^3/n}{s^3} = \frac{-895.46/70}{2.53^3} = -0.79$

$$a_{4} = \frac{\Sigma f(\chi_{1} - \overline{\chi})^{4}/n}{s^{4}} = \frac{12071.82/70}{2.53^{4}} = 4.21$$

Distribution is very peaked and quite skewed to the left.

41b _X	<u>f</u>	$(\chi_i - \overline{\chi})$	$f(\chi_f - \overline{\chi})^3$	$f(x_i - \overline{x})^4$
-6	1	-5.54	-170.03	941.97
-5	2	-4.54	-187.15	849.68
-4	. 4	-3.54	-177.45	628.16
-3	8	-2.54	-131.10	332.99
-2	16	-1.54	- 58.44	89.99
-1	24	-0.54	- 3.78	2.04
0	20	.46	1.95	.90
1	17	1.46	40.45	59.06
2	13	2.46	193.53	476.08
3	3	3.46	124.26	429.96
. 4	1	4.46	88.72	395.68
5	1	5.46	162.77	888.73
	110		-116.27	5,171.72

Note: χ is coded from 6.00.

 $\overline{\chi} = -0.46 \qquad \text{True } \overline{\chi} = 5.9954 \qquad \text{s} = 1.97$ $a_{3} = \frac{\Sigma f(\chi_{1} - \overline{\chi})^{3}/n}{s^{3}} = \frac{-116.27/110}{1.97^{3}} = -0.14$ $a_{4} = \frac{\Sigma f(\chi_{1} - \overline{\chi})^{4}/n}{s^{4}} = \frac{5171.72/110}{1.97^{4}} = 3.11$

Distribution is slightly skewed to the left and not quite as peaked as normal.

Chapter 4

41c	X 1.74 1.79 1.84 1.89 1.94 1.99 2.04 2.09 2.14 2.19 2.24	f 9 6 27 26 29 13 5 3 1 0	$\frac{(\chi_{i} - \chi)}{2032}$ 1532 1032 0532 0032 $.0468$ $.0968$ $.1468$ $.1968$ $.2468$ $.2968$	$\frac{f(\chi_{i} - \chi)^{3} \times 10^{3}}{-41.9509}$ -32.3608 $- 6.5946$ $- 4.0654$ 0009 2.9726 11.7915 15.8179 12.8663 15.0326 0	$\frac{f(\chi_{i} - \overline{\chi})^{4} \times 10^{3}}{8.5244}$ 4.9577 .6806 .2163 ni1 .1391 1.1414 2.3221 4.5001 3.7101 0
		1 0 1			
		125		+25.218 x 10 ³	40.6567×10^3

 $\overline{\chi}$ = 1.9432 s = .096249

$${}^{a}_{3} = \frac{\Sigma f(\chi_{i} - \overline{\chi})^{3}/n}{s^{3}} = \frac{25.218 \times 10^{3}/125}{.096249^{3}} = +0.23$$

$$a_{4} = \frac{\Sigma f(\chi i - \chi)^{4}/n}{s^{4}} = \frac{40.6567 \times 10^{3}/125}{.096249^{4}} = 3.79$$

Distribution is slightly skewed to the right and somewhat peaked.

41d <u>x</u> 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8	f 3 15 34 29 30 22 15 2	$\frac{(X_{i} - \overline{X})}{-1.68}$ -1.18 -0.68 -0.18 .32 .82 1.32 1.82	$\frac{f(\chi_{1} - \overline{\chi})^{3}}{-14.2249}$ -24.6455 -10.6907 1691 $.9830$ 12.1301 34.4995 12.0571	$\frac{f(\chi_{1} - \overline{\chi})^{4}}{23.8978}$ 29.0816 7.2697 .0304 .3146 9.9467 45.5394 21.9439
3.8	$\frac{2}{150}$	1.52	$\frac{12.0571}{9.9395}$	$\frac{21.9439}{138.0242}$

$$\overline{\chi} = 1.98$$

s = 0.8053512

$$a_{3} = \frac{\sum f(\chi_{i} - \overline{\chi})^{3}/n}{s^{3}} = \frac{9.9395/150}{.8053512^{3}} = +.13$$

$$a_4 = \frac{\sum f(\chi_i - \chi)^4 / n}{s^4} = \frac{138.0242 / 150}{.8053512^4} = 2.19$$

Slightly skewed to the right and flatter than normal.

41e	X 3.5 3.8 4.1 4.4 4.7 5.0		$\frac{(\chi_{1} - \chi)}{-0.7569}$ -0.4569 -0.1569 0.1431 0.4431 0.7431	$\frac{f(\chi_{1} - \overline{\chi})^{3}}{-2.6018} \\8584 \\0695 \\ .0410 \\ 1.1310 \\ 2.0517$	$\frac{f(\chi_{1} - \chi)^{4}}{1.96927}$.3922 .0109 .0059 .5011 1.5246
		65		-0.306	4.4040

 $\overline{\chi}$ = 4.2569 s = 0.4212961

$$a_3 = \frac{\Sigma f(\chi_1 - \overline{\chi})^3/n}{s^3} = \frac{-.306/65}{0.4212961^3} = -0.06$$

$$a_4 = \frac{\Sigma f(\chi_1 - \chi)^4 / n}{s^4} = \frac{4.4040 / 65}{0.4212961^4} = 2.15$$

Distribution is essentially symmetrical and much flatter than normal.

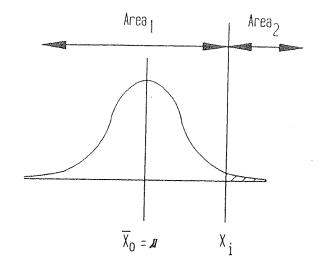
41f	$\frac{\chi}{1000}$	$\frac{f}{6}$	$\frac{(\chi_i - \overline{\chi})}{-748}$	$\frac{f(\chi_{1} - \chi)^{3} \times 10^{6}}{-2511}$	$\frac{f(\chi_i - \chi)^4 \times 10^9}{1878}$
	1300	13	-448	-1169	523
	1600	22	-148	- 71	11
	1900	17	+152	60	9
	2200	11	+452	1015	459
	2500	8	+752	3402	2558
		77		$+726 \times 10^{6}$	5438×10^9

$$\overline{\chi}$$
 = 1748 s = 423

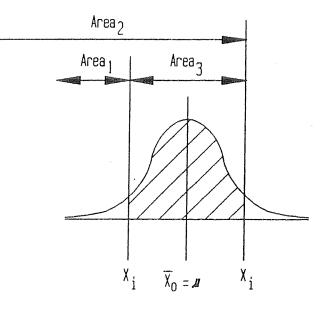
$$a_3 = \frac{\Sigma f(\chi_1 - \overline{\chi})^3/n}{s^3} = \frac{726 \times 10^6/77}{423^3} = +0.10$$

$$a_4 = \frac{\Sigma f(\chi_i - \overline{\chi})^4 / n}{s^4} = \frac{5438 \times 10^9 / 77}{423^4} = 2.21$$

Distribution is essentially symmetrical and much flatter than normal.


42. Max. of 134.5 db
$$(\chi_i)$$

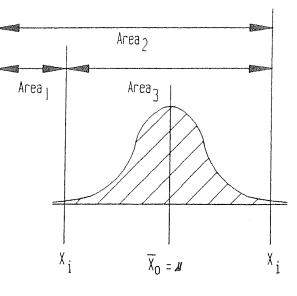
from 17 $\overline{\chi} = 94.7$
 $\sigma = 19.925$
 $z_1 = \chi_i - \mu$
 $z_1 = \frac{134.5 - 94.7}{19.925}$
 $z_1 = 2.00$
Area₁ = 0.9773
Area₂ = 1.000 - Area₁
Area₂ = 1.00 - 0.9773
Area₂ = 0.0227 or 2.8%
43. Min. of 3.65 (χ_i)
Max. of 4.85 (χ_i)
from 18 $\overline{\chi} = 4.25$
 $\sigma = .4213$
 $z_1 = \chi_i - \mu$
 $z_1 = \frac{3.65 - 4.26}{.4213}$
 $z_1 = -1.45$
Area₁ = 0.0734
 $z_2 = \chi_i - \mu$
 σ

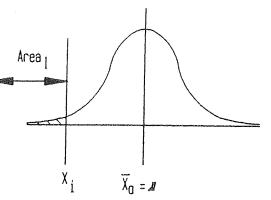

 $z_2 = \frac{4.85 - 4.26}{.4213}$

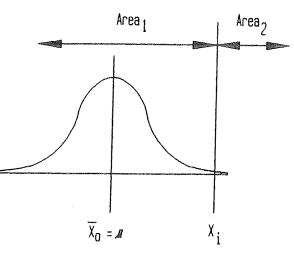
 $z_2 = 1.40$ Area₂ = 0.9192

 $Area_3 = Area_2 - Area_1$

 $Area_3 = 0.9192 - 0.0735$ $Area_3 = 0.8457$ or 84.6%



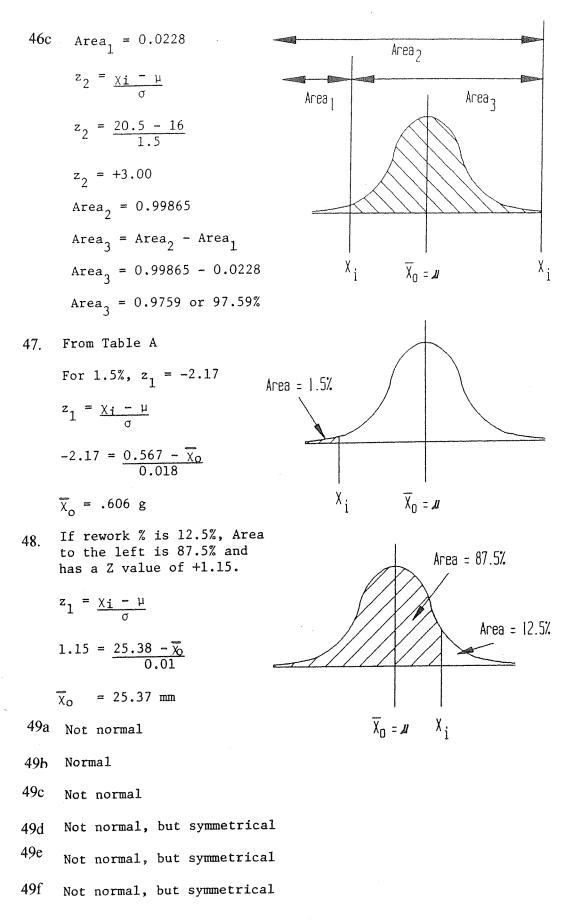

Chapter 4


45c
$$z_1 = \frac{x_1 - \mu}{\sigma}$$

 $z_1 = \frac{8.00 - 9.07}{0.40}$
 $z_1 = -2.68$
Area₁ = 0.0037
 $z_2 = \frac{x_1 - \mu}{\sigma}$
 $z_2 = \frac{10.10 - 9.07}{0.40}$
 $z_2 = +2.58$
Area₂ = 0.9951
Area₃ = Area₂ - Area₁
Area₃ = 0.9951 - 0.0037
Area₃ = 0.9914 or 99.14%
46a. $z_1 = \frac{x_1 - \mu}{\sigma}$
 $z_1 = \frac{13 - 16}{1.5}$
 $z_1 = -2.00$
Area₁ = 0.0228 or 2.28%
46b $z_1 = \frac{x_1 - \mu}{\sigma}$
 $z_1 = \frac{20 - 16}{1.5}$
 $z_1 = +2.67$
Area₂ = 1.000 - Area₁

 $Area_2 = 1.000 - 0.9962$

 $Area_2 = 0.0038 \text{ or } 0.38\%$



Quality Control 8th Edition Besterfield Solutions Manual

Full Download: http://alibabadownload.com/product/quality-control-8th-edition-besterfield-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com