Organic Chemistry with Biological Applications 3rd Edition McMurry Test Bank

Full Download: https://alibabadownload.com/product/organic-chemistry-with-biological-applications-3rd-edition-mcmurry-test-ba

Chapter 01 - Structure and Bonding

1. How many total valence electrons are represented in the following electron configuration?

$$1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$$
 or $1s^2 2s^2 2p^5$
a. 1
b. 3
c. 5
d. 7
e. 9

ANSWER: d
POINTS: 1

Instructions: Write valid Lewis (electron-dot) structures for each formula below. Show all electrons as dots and show all nonbonding electrons.

2. Write:

CH₃CH₂OH ethanol

POINTS: 1

3. The structure of urea is shown below. Fill in any nonbonding valence electrons that are missing from the line-bond structure.

$$H_2N$$
— C — NH_2
 $ANSWER:$
 $H_2\ddot{N}$ — C — $\ddot{N}H_2$
 $POINTS:$ 1

Instructions: Determine the hybridization for the indicated atoms in each structure below.

$$A$$
 O
 CH_3-CH_2-C
 O
 HCH_3-C
 N

4. Refer to instructions. The hybridization of carbon atom A is _____.

ANSWER: sp^2 POINTS: 1

5. Refer to instructions. The hybridization of carbon atom B is _____.

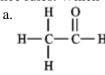
ANSWER: sp
POINTS: 1

6. How many nonbonding electron pairs are in the structure shown below?

Copyright Cengage Learning. Powered by Cognero.

a. 2

b. 4


c. 6

d. 8

e. none of these

ANSWER: b

7. The molecular formula C_2H_4O can be converted into three-line bond (Kekulé) structures that are consistent with valence rules. Which one of the following Kekulé structures is *not* consistent with valence rules?

ANSWER: d
POINTS: 1

Instructions: Propose a structure for a molecule that meets the following description.

8. Refer to instructions. Contains only two sp^3 hybridized carbons and two sp hybridized carbons.

ANSWER. CH_3 —C $\equiv C$ — CH_3 or CH_3 — CH_2 —C $\equiv CH$

POINTS: 1

9. Refer to instructions. Contains only one sp^3 hybridized carbon and two sp^2 hybridized carbons.

ANSWER: H₃C—C=CH₂

POINTS: 1

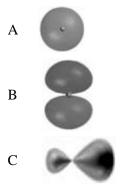
- 10. Consider the formation of an sp^2 hybrid orbital. Which of the following is true?
 - a. Four equivalent hybrid orbitals are produced.
 - b. One s and one p atomic orbital are involved.
 - c. One p atomic orbital remains unhybridized.

- d. The hybrid orbitals produced can form π bonds.
- e. none of these

ANSWER: c
POINTS: 1

- 11. According to atomic theory:
 - a. the nucleus is positively charged.
 - b. the nucleus contains both charged and uncharged particles.
 - c. the electrons contribute very little to the total mass of the atom.
 - d. the electrons are located in the atomic space outside the nucleus.
 - e. all of these

ANSWER: e
POINTS: 1

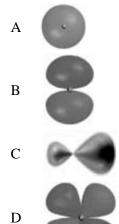

- 12. In drawing the Lewis structure for an organic compound, the carbon atoms should always be shown with
 - a. lone pairs of electrons.
 - b. four single bonds.
 - c. eight total electrons.
 - d. a positive charge.
 - e. none of these

ANSWER: c
POINTS: 1

- 13. Covalent bonding
 - a. involves a transfer of electrons from one atom to another.
 - b. occurs when atoms share all their valence electrons.
 - c. occurs when unpaired valence electrons are shared between atoms.
 - d. occurs when nonvalence electrons are shared between atoms.
 - e. none of these

ANSWER: c
POINTS: 1

14. Which of the following best represents the shape of a 2p atomic orbital of carbon?



- a. A
- b. B
- c. C
- d. D

ANSWER: b

15. Which of the following best represents the shape of a sp^3 hybrid orbital of carbon?

- a. A
- b. B
- c. C
- d. D

ANSWER: c
POINTS: 1

- 16. How many electrons are there in the valence shell of the carbon atom of a methyl anion, CH₃-?
 - a. 5
 - b. 6
 - c. 7
 - d. 8

ANSWER: d
POINTS: 1

- 17. Which of the following statements is **not** true?
 - a. The carbon-carbon single bond of an alkane is weaker than the carbon-carbon triple bond of an alkyne.
 - b. The carbon-carbon triple bond of an alkyne is shorter than the carbon-carbon double bond of an alkene.
- c. The carbon-carbon triple bond of an alkyne is exactly three times as strong as a carbon-carbon single bond of

an alkane.

d. The carbon–carbon single bond of an alkane is longer than the carbon–carbon triple bond of an alkyne.

ANSWER: c
POINTS: 1

18. Draw all the lone pairs (nonbonding valence electrons) on the structure of phosgene, a poisonous gas once used as a chemical warfare agent.

POINTS:

19. Specify the hybridization of each carbon atom of limonene, a natural product present in citrus fruits, and thujone, which is derived from wormwood, a traditional component of the notorious liquor, Absinthe.

CH₃

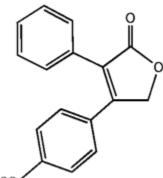
$$H_{3}C$$

$$CH_{2}$$

$$Iimonene$$

$$ANSWER:$$

$$Sp^{3}$$


$$Sp^{2}$$

$$Sp^{3}$$

$$S$$

POINTS:

20. Convert the skeletal drawing of the pharmaceutical Vioxx into a molecular formula.

CH₃SO₂

ANSWER: C₁₇H₁₄O₄S

POINTS: 1

21. Draw a picture showing the orbitals involved in the π -bonds of cyclopenta-1,3-diene, a commonly encountered reagent in organic synthesis.

POINTS:

22. Draw all possible structures of CF_nCl_m where n and m vary from 0 to 4.

ANSWER:

POINTS:

23. Draw two possible isomers of C_6H_6 in which all the carbon atoms are sp^2 hybridized.

ANSWER:

and

POINTS:

24. Draw the structure for CCl₂F₂ using solid, wedged, and dashed lines to show the tetrahedral geometry.

ANSWER:

POINTS:

Instructions: Consider the two structures below to answer the following question.

CH₃CH₂OH CH₃OCH₃

- 25. Refer to instructions. Which of the following correctly describes the structure of these compounds?
 - a. All carbon atoms are sp^3 hybridized.
 - b. All of the bonds are sigma bonds.
 - c. Each oxygen atom has two nonbonding pairs of electrons.
 - d. The bond angle around each oxygen atom is ideally about 109.5°.
 - e. All of these

ANSWER: e
POINTS: 1

26. What is the expected hybridization around the sulfur atom in diethyl sulfide?

CH₃CH₂- S- CH₂CH₃

a. sp

b. sp^{2}

c. sp^3

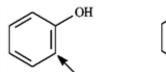
d. The sulfur atom is not hybridized.

ANSWER: c
POINTS: 1

- 27. Which of the following statements is **not** true according to molecular orbital (MO) theory?
 - a. Antibonding orbitals are higher in energy than the corresponding bonding orbital.
 - b. The head-on overlap of an s and a p atomic orbital can produce a σ molecular orbital.
 - c. A π molecular orbital forms only from the combination of p atomic orbital wave functions.
 - d. The subtractive combination of atomic orbital wave functions produces a bonding molecular orbital.

ANSWER: d
POINTS: 1

28. The molecular orbital shown below is most likely of what type?


- a. σ bonding
- $b. \sigma$ antibonding
- c. π bonding
- d. π antibonding

ANSWER: c
POINTS: 1

Organic Chemistry with Biological Applications 3rd Edition McMurry Test Bank

Full Download: https://alibabadownload.com/product/organic-chemistry-with-biological-applications-3rd-edition-mcmurry-test-ba

Chapter 01 - Structure and Bonding

- a. the same type of hybridization on the carbon atom
- b. the same geometry around the carbon atom
- c. the same number of hydrogen atoms bonded to the carbon atom
- d. both carbon atoms are involved in a π bond

ANSWER: c
POINTS: 1

30. The following species forms during an organic reaction.

What is the formal charge on the carbon atom indicated by the arrow?

- a. 0
- b. +1
- c. -1
- d. +2
- e. -2

ANSWER: b

POINTS: 1