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Chapter 1

ell Letzy =y, 22 =9y, ... 2, = y(=1).

T = Zy

:tn—l = Ty
in = g(t7m1a"~,znvu)

Yy = o

e 12 Let sy =y, 22 =y, ..., 2py =y, g, = y(*=D) — gy (t,5,yM),...,y(n=D) 4.

1 =
Tp-2 = Tp-
Tp-1 = y(n—l) = Tn +g2(t,$1,2’2,...,$n_1)u
. (n) . Og2 | 0gs .
Tn = = g2t %1, -, Tp1)u - | =+ =2
n Y ga(t, 21 n—1) (Bt 1, 1+---+
= gt z1,...,Tn-1,Zn + g2()u,u)
09z , Ogo 0g2
—_— —_— — ...+ T .
(%2 + 2ot t 522 en b g2 )
Yy = &
el13 Letzyi =y, z2=9yY, ..., 2, =y VD g1 =2, ..., Tppm = 2(mD.
Ty = I
Tp-1 = Tp .
Tn = g(T1,--,%n, Tntls- - Trdm, W)
Tny1 Tnt2
Intm—-1 = ZTnim
Tptm = U
Y I

0ga

0zpn_1

in—l) u



2 CHAPTER 1.

1.4 Letx1=q,zg=q,x=[2 ] € R*™,

Ii)l = T2
£y = § = M Yz1)[u— C(x1,32)z2 — Dz3 — g(71))

e 1.5 Let 21 = q1, T2 = 1, T3 = G2, T4 = Ga.

ii:l = X2

. MgL . k

To = - Ig 51nx1—7(z1—m3)
T3 = 14

T4 = Zc-(:l: -z )+-1—u

+ = 5@ 3 7

e 1.6 Let 21 = q1, 22 = G1, T3 = @2, T4 = g2, where x; € R™.

.’i‘l = T2

By = —M7Yz1)[h(z1,72) + K(z1 — 73))
T3 = 24

i = JK(z1—z3)+J u

e 1.7 Let
Z = Az + Bu, y=Cz

be a state model of the linear system.
u=r-9(t,y) =r—9(tCz)

Hence
= Az — ByY(t,Cz)+ Br, y=Cz

©1.8 (a) Let 2y =6, 22 = 5, 73 = E;, and u = Epp.

Iy = T
o = P Da: ma: sinz
2 = o u 1
1
I3 = - n—2$3+1’§'608$1 + —u
T T T

(b) The equilibrium points are the roots of the equations

0 = T
0 = 0815— D.’L‘z - 2.0.’1:3 sina:l
0 = —-27z3+1.7cosz; +1.22
0.4075
T =0=> 23 = —
Sin xy

Substituting z3 in the third equation yields
(1.22 + 1.7coszy) sinz; — 1.10025 =0

The foregoing equation has two roots z; = 0.4067 and z; = 1.6398 in the interval —7 < z; < 7. Due to
periodicity, 0.4067 + 2n7 and 1.6398 + 2n7 are also roots for n = +1,+2,.... Each root z; = z gives an



equilibrium point (z,0,0.4075/sinz).

(c) With E, = constant, the model reduces to

.’i:l = X2
= ———z3——F
) Vi M.’l?z Vi q SIN T
which is a pendulum equation with an input torque.
e 1.9 (a) Let z; = ¢, 2 = vc.
i‘l = (]BL=’UL=Uc=.’l:2
4 = b0 = —i —1.[1' o z]
2 T UVCEFICEGlsT U
1 1
= -5 [’l:s - Io sin kxl - -E.’Bz}

(b) Let z; = ir, T2 = ve.

&1 = Ipkcosker ¢p = kI3 —i3ve
= zak\/IE — a2

. 17 1
o = E[Zs—xl—ﬁ.’tz:l

The model of (a) is more familiar since it is the pendulum equation.

e 1.10 (a) Let z1 = ¢, z2 = ve.

T1 = L=V =Uc =22
Y _1[. ve ]
T2 = Uc—CC-—C ] R L
1
= o] [is—Lzl—,u:z::f—%xz]
(b) 72 =0 = Lz; +pz3 =0 = z; = 0. There is a unique equilibrium point at the origin.
¢ 1.11 (a)
z2=Az+ Bu, y=Cz, wu=sine
¢=0;—0,=—6,=-y=-Cz
z=Az+ Bsine, é=-Cz
. (b)

0= Az + Bsine = z=-A"'Bsine
0=Cz = —CA !'Bsine=G(0)sine=0
G(0)#0 = sine=0 = e==+nm, n=0,1,2,--- and z2=0
(c) For G(s) =1/(rs+1), take A= —1/7, B=1/7 and C = 1. Then

. 1 1 . .
Z=— —z+ —slne, e€e=-—2
T T

Letz; = e, x2 = —2.
. . 1 1 .
I = T2, To = — —T2— —SINI
T T



4 CHAPTER 1.

e 1.12 The equation of motion is
Mijj= Mg —ky - 19 — c2yly]

Let z1 =y and z2 = 4.
k C1

Ty =2, To=— T

- SpEr = groelel +
M M Ty

¢ 1.13 (a)
mj = —(k1 + k2)y — cj + h(vo — 9)

where ¢ > 0 is the viscous friction coefficient.
(b) h(v) = h(vo) — k' (vo)y-
mij = — (k1 + k2)y — [c + h'(v0)]g + h(vo)

(c) To obtain negative friction, we want ¢+ h'(vp) < 0. This can be achieved with the friction characteristic
of Figure 1.5(d) if vp is in the range where the slope is negative and the magnitude of the negative slope is
greater than c.

e 1.14 The equation of motion is
M =F — Mgsin8 — k;sgn(v) — kov — k3v?

where ky, k2, and k; are positive constants. Let £ = v, u = F, and w = sin§.

. 1
t=7 [—kisgn(z) — kaz — ksz® + u] — gw

e 1.15 (a)
d . . .
H= mﬁ(y + Lsinf) = ma(y + L cosb) = m(ij + LO cos® — L6 sin 6)
&2 d . .. . - -
V= ma?(L cosd) +mg = m%(—LesmO) +mg = —mLOsinf — mL6* cosf + mg
Substituting V' and H in the f-equation yields
I6 = VLsinf— HLcosf

—mL26(sin 6)> — mL%0%sin 6 cos§ + mgLsin6

—mLj cos§ — mL?0(cos0)? + mL?6?sin 0 cos §

—mL?§[(sin0)? + (cos§)?] + mgLsind — mLijcosf

—mL26 +mgLsinf — mLjcosf
Substituting H in the j-equation yields

Mjj=F —m(§ + Lf cosf — Lé?sin ) — ky

(b) .
0| _ mgL sin 6
be) [ i ] - [ F+mLé2sin0—ky]
where )
_ | I+mL® mLcosé
D) = [ mLcos§ m+ M J

det(D(8)) = (I + mL?)(m + M) — m?L? cos®> = A(9)



Hence,

()

¢ 1.16 (a)

1

T2

3

Ty

F,=m

19) = 1 m+M  —mLcosf
~ A@) | —-mLcos® I+mL?

—mLcos® I+mlL?

§ ] 1 [ m+M  —mLcosé ] [ mgLsin }

T A6) F +mLé?sinf — ky

T2

6 = A(G) [ m + M)mgLsin@ — mL cosf(F + mL#*sinf — ky)]

AG) [(m + M)mgLsinz; — mLcoszy(u + mLz}sinz; — kzg)]

T4 »

j = ﬁ [—mszg sinf cosd + (I + mL?)(F + mL#?sinf — ky)]
1

e 272,05 2 2 . _
A(zy) [ m*L*gsinz, coszy + (I + mL*)(u + mLzjsinz; k:c4)]

3%(3:0 + Lsinf) = m%(a’:c + L cosh) = m(%. + Lb cosd — L6? sinh)

m— ij (Lcosb) = d ( —Lfsin ) = —mLfsin 6 — mL6? cosd

Substituting F; and Fy in the 6-equation ylelds

I6 = u+ FyLsin@ — F;Lcos6
u — mL?0(sin 6)> — mL?6? sin 6 cos §
—mLi, cos — mL26(cos#)? + mL26?sinf cosf
u — mL?[(sin 0)? + (cos §)?] — mLi, cosf
= u-—mL?) — mLi,cosf

Substituting F; in the #.-equation yields

Thus,

where

(b)

Hence,

Mi, = —mi, — mL0 cos8 + mL6?sin 0 — kz,

D(8) [ i ] = [ mLé2si:0-ka:c ]

_ [ I+mL?® mLcosé
D(G)—[mLcosé' m+M]

det(D(8)) = (I + mL?)(m + M) — m2L2 cos® 6 = A(6)

D1(9) = m+M —mL cosf
A(o) —mLcos® I+mlL?



6
6]1_ 1 m+M  —mLcosf u
¥ | T A@) | -mLcosé I+ mL? mL#?sin6 — kz,
(©)
:i'l = X2
. s 1 _ 2 o
iy = 60 = _A(H) [(m + M)u — mL cos@(mL6° siné k:vc)]
1 .
= @ [(m + M)u — mL cosz;(mLa3 sinzy — kz3)] .
3 = T4
T4 = . = —A% [—mLu cosf + (I + mL?)(mL6?sinf — ka:c)]
1 .
= —A—(x—l)- [-mLucoszy + (I + mL?)(mLz3sinz; — kz3)]
(d) Take u = constant. Setting the derivatives &; = 0, we obtain z; = 4 = 0 and
0 = (m+ M)u+ mkLzscosz
0 = —mLucosz; — k(I + mL?)zs

Eliminating z3 between the two equations yields

u[(m + M)(I + mL?) —m?L%cos® ;] = u A(z;) =0

CHAPTER 1.

Since A(z;) > 0, equilibrium can be maintained only at v = 0. Then, 3 = 0. Thus, the system has an

equilibrium set {z; = 23 = 24 = 0}.

e 1.17 (a) Let 1 = if, T2 = 44, and 23 = w.

T = - %2’1 + -Zif

Ty = - &xz A
La La La

. C3 C2

r3 = - 7:1,'3 + 7.’1:11:2

(b) Take v, = V, = constant and vy = u.

(c) Take vy = V; = constant and v, = u. A constant field voltage implies that (at steady state) i

V¢ /Ry def 7 = constant. Hence, the model reduces to the second-oder linear model

(d) Let v = u.

. Ra C]_If u
T2 = Laz‘z L. r3 + I.
. 3 caly

T3 = J:ca + 7 To

T = Lf + I

Ty = - —}—%f-a: f—l—x T3 + =
2 = La 2 La 143 La

C3 €2

T3 =



¢1.18 (a) z1 =y, T2 =79, T3 =1,
1

)

3

(b) The equilibrium equations are

u="v.

k 1
= §J = — —q —F )
(] —y+g+ —F(y9)
ko1
m 2 m 2a(l+z/a)?
k Loaxg
m 2m(a + z)?

= g——

= g-
_di _d[ ¢
- a"a[zm]
6 __¢ 4L,
Iy)  P(y) dy°

. ) Ly .
=R+ ) s+ vl
L0a$2$3 + ]
(a + z1)?

1
L(y)
1

() [“R’”3 +

0 = Zo

0 = _ E.’i‘ _ Loa:i'%
= IT R 2m(a + I )?

0 = —RZs+ LoaZaZs

=== +a
3 (a+%1)?

Set ; =r, T3 = Iss, and @ = V. Then

‘ 2y 1/2
,ssz(w_) . V.. =RI,

° i.19 (a)

Let £ = h.

(b)  =p— pa = pgh.

Loa

h
% (/0 AN d)\) = w; — k+/pgh
AWk = u—k+v/pgh

) 1
w—m[u—k\/ﬁﬂ y=z

P9 __(uw—kvz), y=2z/(pg)

*= Ae/pg)

(c) At equilibrium,

Hence, uss = k/pgr

0=1ug — kvpgzssy Yss = Tss =T
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e 1.20 (a) From the equations v = w; — w, and p = p, + (pg/A)v, we have

=0 =B - w,) = Zlg7 (ap) - kv/Bp)

Using = = Ap as the state variable, we obtain
&= Blip™(2) - kval
(b) At equilibrium we have
¢71(z) = kvE
Writing Z = ¢(w;), we can rewrite the previous equation as

W; = k+/¢(0;)

Hence,

Wi\ 2
(5) = 9@

The solutions of this equation are given by the intersection of the curve (w;/k)? with the curve ¢(w;), which
is shown in Figure 1.29 of the text. From the figure, it is clear that there is only one intersection point.

e 1.21 (a) We have
ﬁlzwp—wl, 1'12=w1-—w2
P9

. _ P9 . _ P9,
n= A, V1, P2 A2U2
wy =kivpr —p2, w2 =kavVD2 —Pa, D1 — Pa = P(wp)
Let 1 =p1 — pa and 22 = P2 — Pa-
B = pp = %(wp —wy) = Z—i [¢_1(:l,'1) —kivz —le
Tz = P2 = Z_i(wl —wp) = % [k1vE1 — 72 — k2y/Z2)
(b) The equilibrium equations are
7 (Z1) = kVZ -2
kav/Z2

b
=2
8
-
Tl
8
[ M)

]

From the second equation, we have
_ B
T E+E

Substituting this expression in the first equilibrium equation yields

)

1= - kiks
71 (Z1) = keqV/Z1, Where keq = —m——
VEkE + k2

Writing Z; = ¢(W,), we can rewrite the previous equation as

Wp = keq\/ ¢(u’),,)

_ o\ 2
Wp\*
( Feq ) = @(wp)
The solutions of this equation are given by the intersection of the curve (W, /keq)? with the curve ¢(wp),
which is shown in Figure 1.29 of the text. From the figure, it is clear that there is only one intersection

point.

Hence,



e 1.22 (a)

T = d:clf-—da:1+r1
.'i:2 = d.’l:zf—-d.’tz-‘rz

The assumptions r; = px1, 72 =71/Y = p21 /Y, and 215 = 0 yield

1 = (p-d)z
Ty = d(ZZf—:l:z)—uiL‘l/Y

(b) When u = pm2/(km + z2), the equilibrium equations are

_ BmT2 _ =
0 = <—km T 132 d> Iy

_ oy MmT1T2
0 = d(z‘zf iL'z) —Y(km+.’i‘z)
from the first equation,
HmZ2 kmd
=0 o =d = =
T T Em + 22 To o — p

Substituting Z; = 0 in the second equilibrium equation yields Z = z25. Substituting Z; = knd/(pm — d) in
the second equilibrium equation yields
kmd
=Y (.’l:z f— i )

I-l'm_d

Hence, there are two equilibrium points at

(Y (wzf— fimd ), md ) and (0, z25)

bm —d Um —d
(c) When p = pmz2/(km + z2 + k122), the equilibrium equations are
BmT2 _
0 = —_———d
(km + 2y + k122 ) =

_ “mjljz
Y (km + T2 + k1Z3)

0 = d(z25 — Z2)

from the first equation, Z; = 0 or Z; is the root of d = p(Z;). Since d < maxz,>o{pu(z2)}, the equation
d = u(Z2) has two roots. Denote these roots by Z,, and Z3;. Substituting Z; = 0 in the second equilibrium
equation yields o = zof. Substituting Z, = Z3, in the second equilibrium equation yields

(225 — Z2a) — W(Z20)21/Y =0 = Z1 =Y (T25 — F2a)

since u(Z2,) = d. Similarly, substituting Zo = Z3p in the second equilibrium equation yields Z; = Y (z2f —
Zo9p). Thus, there are three equilibrium points at

(Y(z25 — T2a),%20), (Y (225 — T2p),Z2), and (0,z25)






Chapter 2

o 2.1 (1)
0=—x1+2z?+x2, 0= -z — 2

To=-2; = 0=2r;(22-1) = £,=0,1,0r —1

There are three equilibrium points at (0,0), (1,—1), and (—1,1). Determine the type of each point using

linearization.
Of [ -1+6z7 1
oz - -1 -1
afl  _[-1 1 ~ ' .
oz (0,0) B [ -1 -1 ] = Mz=-1%j = (0,0)is a stable focus
of 5 1 .
oz 1,-1) - [ -1 -1 ] = M2=2%Vv8 = (1,-1)is asaddle
Similarly, (—1,1) is a saddle.
(2)

0=z;(14+23), O0=—zo+22+ 2129 — 23
0=z1(1422) = z3=00rz; = -1
=0 ¢0=-—a:2+a:§ = z9=0o0rzy=1
Te=-1=0=2-z3;-2 = z;,=1

There are three equilibrium points at (0,0), (0,1), and (1,—1). Determine the type of each point using

linearization.
0f [ 14z z1
oz ~ 272—311}% 142z +x;
0
of - 10 = M2=1 -1 = (0,0)isasaddle
oz | g 0) 0 -1 ’
of

_ [ 3 (1) ] = M2=2,1 = (0,1) is unstable node
3:1: (0,1)

of |0 1 = M2=-1%jV3 = (1,-1)is a stable focus
3:1: a,-1) -4 -2
3) )
(1 _ «T1Z2 — _ T2
0=01-z1)11 T2 0 (2 1+x1)$2

11
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From the second equation, £z = 0 or z2 = 2(1 + z1).

Tp=0 = 2 =00rz; =1
.’L'2=2(1+IL'1) $0=($1+3).’L’1 = z3=00rz; =-3

There are four equilibrium points at (0,0), (1,0), (0, 2), and (—3, —4). Notice that we have assumed 1+, #
0; otherwise the equation would not be well defined.

2
of 1-20 -ty 205
Oz B 3 2z

_Ez_F 92— 2z2
14z, (14z1)

of =10 ; Eigenvalues : 1,2 = (0,0) is unstable node
ox | _ 0 2
z=(0,0) »
of = [ -1 —21 ] ; Eigenvalues: — 1,2 => (1,0) is a saddle
oz z=(1,0)
of |30 ; Eigenvalues: — 3,-2 = (0,2) is a stable node
oz 4 -2
z=(0,2)
of =192 3 ; Eigenvalues : 7.722, —0.772 = (=3, —4) is a saddle
8x z=(—3,—4) 4 -2

(4) \ .
0=z, O0=-x;+z2(1—2xf+0.1z7)

There is a unique equilibrium point at (0,0). Determine its type using linearization.
af _ 0 1
8z | —1-2z12 +0.4zdz, 1—22?+0.1x}
of

aof 0 1
Oz 1

(0,0) B [ -1

] = A2 =(1/2)£3jV3/2 = (0,0) is unstable focus

(8)

0= (z1 —z2)(1— :r,f - a:g), 0= (z1 +z2)(1 - a:f - a:%)

{«? + 23 = 1} is an equilibrium set and (0,0) is an isolated equilibrium point.

of

oz

1-32} — 23 + 2212 —22172 — 1+ 23 + 323 |1 -1
1- 323 — 2} — 2922 —23122 + 1 — 2% — 323 (oo)— 11

z=(0,0) - [

Eigenvalues are 1 + j; hence, (0,0) is unstable focus.

(6) . .
0="$1+32, O=$1“$2
To=13 2> 11(1-2%)=0 = z,=00r2l =1

The equation z§ = 1 has two real roots at z; = 1. Thus, there are three equilibrium points at (0,0), (1,1),

oz 1 —322



13

of [ 0 1 Eigenvalues: 1,—1 = (0,0) is a saddle
Oz |, _ 1 0
z=(0,0)
of = Eigenvalues: —2,—4 = (1,1) is a stable node
0% | (1) -3

Similarly, (—1,—1) is a stable node.

e 2.2 (1)
0=z, O0=-—x;+(1/16)z} — 22
=0 = O0=z:(z{ —16) = z:=0, 2, or —2

There are three equilibrium points at (0,0), (2,0), and (—2,0). Determine the type of each point using

linearization.
of _ 0 1
oz | =1+ (5/16)zf -1
o = [ 0 1 ] = A2=-(1/2)£;jv3/2 = (0,0) is a stable focus
3:17 (0,0 -1 -1
of 0 1 .
= . = = M2=-(1/2)£V17/2 = (2,0)is asaddle
Similarly, (—2,0) is a saddle.
(2

0=2z; — 2122, 0=217 1,
212—22)=0 = z;=0o0rz3 =2
r1=0 = 2=0, 22=2 = zf:l = z3=1lor —1
There are three equilibrium points at (0,0), (1,2), and (—1,2). Determine the type of each point using

linearization.
a_f _ 2—2y —x
oz - 4231 -1
0
o = [ (2) 01 ] = M2=2,-1 = (0,0)is asaddle
0z |(0,0) -
of 0 -1 . .
. =14 -1 = A= —(1/2)+jV15/2 = (1,2) is a stable focus
0z (1 9)
9z =1 _4 1| = M2=-(1/2)%£;v15/2 = (-1,2) is a stable focus
Oz (-1,2) |
(3)

0=1x3, 0= —x3—9¢(r1 —x2)
22=0 = Y(x)=0 = z;=0
There is a unique equilibrium point at (0,0). Determine its type by linearization.

of
or

= [ 0 1 } _ [ 0 1 ]
00 L ~3(@1—22)*=05 —14+3(z1-22)*+05],, | -05 -05

The eigenvalues are —(1/4) £ j1/7/4. Hence, (0,0) is stable focus.
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e 2.3 (1) The system has three equilibrium points: (0,0) is a stable focus, (1,—1) and (—1,1) are saddle
points. The phase portrait is shown in Figure 2.1. The stable trajectories of the saddle form a lobe around
the stable focus. All trajectories inside the lobe converge to the stable focus. All trajectories outside it

diverge to infinity.

(2) The system has three equilibrium points: (0, 0) is a saddle, (0,1) is unstable node, and (1, —1) is a stable
focus. The phase portrait is shown in Figure 2.2. The z,-axis is a trajectory itself since z1 (t) = 0 = #:(t) = 0.
The x,-axis is a separatrix. All trajectories in the right half converge to the stable focus. All trajectories in
the left have diverge to infinity. On the zp-axis itself, trajectories starting at 3 < 1 converge to the origin,
while trajectories starting at z; > 1 diverge to infinity.

3 5
2 \\

1

MO MO

-1

-2 \\

- -5

3 -2 0 2 -5 0 5

% X
Figure 2.1: Exercise 2.3(1). Figure 2.2: Exercise 2.3(2).

(8) The system has four equilibrium points: (0,0) is unstable node, (1,0) is a saddle, (0, 2) is a stable node,
and (—3,—4) is a saddle. To avoid the condition z; + 1 = 0, we limit our analysis to the right half of
the plane, that is, {x; > 0}. This makes sense in view of the fact that the zs-axis is a trajectory since
71(t) = 0 = #;(t) = 0. Hence, trajectories starting in {z; > 0} stay there for all time. The phase por-
trait is shown in Figure 2.3. Notice that the z;-axis is a trajectory since z2(t) = 0 = #2(t) = 0. Itis a
separatrix that divides the half plane {z; > 0} into two quarters. All trajectories starting in the quarter
{z1 > 0, x5 > 0} converge to the stable node (0,2). All trajectories starting in the quarter {z; >0, z2 < 0}
diverge to infinity. Trajectories starting on the z,-axis approach the stable node (0,2) if z2(0) > 0 and
diverge to infinity if z2(0) < 0. Trajectories starting on the z;-axis with z;(0) > 0 approach the saddle
(1,0).

(4) There is a unique equilibrium point at the origin, which is unstable focus. The phase portrait is
shown in Figure 2.4. There are two limit cycles. The inner cycle is stable while the outer one is unstable.
Al trajectories starting inside the stable limit cycle, except the origin, approach it as ¢ tends to infinity.
Trajectories starting in the region between the two limit cycles approach the stable limit cycle. Trajectories
starting outside the unstable limit cycle diverge to infinity.

(5) The system has an equilibrium set at the unit circle and unstable focus at the origin. The phase portrait
is shown in Figure 2.5. All trajectories, except the origin, approach the unit circle at ¢ tends to infinity.

(6) The system has three equilibrium points: a saddle at (0,0) and stable nodes at (1,1) and (—1,-1).
The phase portrait is shown in Figure 2.6. The stable trajectories of the saddle lie on the line z; + z2 = 0.
All trajectories to the right of this line converge to the stable node (1,1) and all trajectories to its left
converge to the stable node (—1,—1). Trajectories on the line z;, + z2 = 0 itself converge to the origin.
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Figure 2.4: Exercise 2.3(4).
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Figure 2.5: Exercise 2.3(5). Figure 2.6: Exercise 2.3(6).

e 2.4 (1) The system has three equilibrium points at (0,0), (a,0), and (—a,0), where a is the root of
a =tan(a/2) = a=2.3311

The Jacobian matrix is

R PRV _—_—y
0~ | 1-2/[1+4 (z1 +22)%] —2/[1+ (z1 + x2)?]

o _foo
ax (0’0) _1 —2

Although we have multiple eigenvalues, we can conclude that the origin is a stable node because f(z) is an
analytic function of z in the neighborhood of the origin.

of
oz

] = M2=-1, -1

0 1

0.6892 —0.3108 ] = A2 =0.6892, -1 = (2.3311,0) is a saddle

(2.3311,0) [

Similarly, (—2.3311,0) is a saddle. The phase portrait is shown in Figure 2.7 with the arrowheads. The
stable trajectories of the two saddle points forms two separatrices, which divide the plane into three regions.
All trajectories in the middle region converge to the origin as ¢t tends to infinity. All trajectories in the outer
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regions diverge to infinity.

(2)
0==x1(2-1x3), 0=22%—1z,
From the first equation, ; = 0 or z2 = 2.
r1=0 = z2=0
T2=2 = a:f=11=> T, = %1

There are three equilibrium points at (0,0), (1,2), and (-1,2).

0 2 .
—5£ o = [ 0 _01 ] = M2=2, -1 = (0,0)is asaddle
of -0 -1 = A2 =—(1/2)£jV15/2 = (1,2) is a stable focus
0z |(1,2) 4 -1
of =0 1 = M2=—(1/2)£5V15/2 = (—1,2) is a stable focus
0zl 1z L4 1

The phase portrait is shown in Figure 2.7 with the arrowheads. The stable trajectories of the saddle lie
on the z2-axis. They form a separatrix that divides the plane in two halves. Trajectories in the right half
converge to the stable focus (1,2) and those in the half converge to the stable focus (-1, 2).

(8) There is a unique equilibrium point at the origin.

of
Oz

= [ _01 } ] = A2 =(1/2)£jV3/2 = (-1,2)is unstable focus
(0,0)

The phase portrait is shown in Figure 2.7 with the arrowheads. There is a stable limit cycle around the
origin. All trajectories, except the origin, approach the limit cycle as ¢ tends to infinity.-

(4) The equilibrium points are given by the real roots of the equation
0=y* -2y +y

where z; = y? and 2 = 1—y. It can be seen that the equation has four roots at y = 0,1, (=14+/5)/2. Hence,
there are four equilibrium points at (0,1), (1,0), ((3 = v/5)/2,(3 — v/5)/2), and ((3 + v/5)/2, (3 + V/5)/2).
The following table shows the Jacobian matrix and the type of each point.

Point Jacobian matrix Eigenvalues Type
[ -2 -1
(0,1) 1 0 ] —2.4142, 0.4142  saddle
[ 0 -1
(1,0) 1 o ] 0.4142, —2.4142  saddle
(3-+5)/2,(3 - v5)/2) -l -1 —0.2361, —2.2361 stable node
| -1 -1.2361
(G+vB)/2,6+vE)y2) | 2B 57951 ] 42361, 2.2361  unstable node
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The phase portrait is shown in Figure 2.7 with the arrowheads. The stable trajectories of the saddle points
divide the plane into two regions. The region that contains the stable focus has the feature that all trajectories
inside it converge to the stable focus. All trajectories in the other region diverge to infinity.

S
S T

/A

-4 -2 0 2 4 -5 0 5
M (9]
2
% 8 X,
2.5
! 2
0 15
x| ]
-1 0.5 /&
X
AT
-2 —Q.5
-2 -1 0 1 2 0 1 2 3
@ “)
Figure 2.7: Phase portraits of Exercise 2.4.
e 2.5 (a)
of _ | -1+ zz0(z) —B(z) + 3a(z)
oz ~ | B(z) - zia(x) -1 - z12720(7)
where 1 1
a(z) B(z) =

- (=2 +a:§)(ln\/m%+w§)2’ In /2% + z2

" Noting that lim,_o z;z;ja(x) = 0 for ¢,j = 1,2 and lim,_,0 B(z) = 0, it can be seen that

of
oz

= [ _01 _?1 ] = the origin is a stable node
z=0

(b) Transform the state equation into the polar coordinates
T
r=4/z}+23, 6=tan! (—-2-)
1

t

to obtain
F=—r = r(t) =ree”
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and, for 0 <7y <1,
=———— = 0(t) = 6p — In(|Inro| + t) + In(]In7o])

Hence, for 0 < 1o < 1, r(t) and 6(t) are strictly decreasing and lim;— e 7(¢) = 0, lims—o0 0(t) = —oo. Thus,
the trajectory spirals clockwise toward the origin.
(c) f(z) is continuously differentiable, but not analytic, in the neighborhood of z = 0. See the discussion

on page 54 of the text.
e 2.6 (a) The equilibrium points are the real roots of
0=—2 +azs — bz122 + 22, 0= —(a+b)z + bzl — 112,
From the second equation we have
z1[—(a+b) +bzy —22) =0 = z; =0o0rz2 = —(a+0b)+bx;
Substitution of z; = 0 in the first equation yields
zo(za+a)=0 = z2=0o0rzy =—a
Thus, there are equilibrium points at (0,0) and (0, —a). Substitution of zz = —(a + b) + bz in the first
equation yields

b(a + b) —(a+b)
0=b(a+b)—(1+b)z; = = =
(@a+d)-1+°)21=0 = =, E S iR

Hence, there is an equilibrium point at (%%_*;—gl, :1%%,91) .

(b) -
fo_ —1— bz a— bz, + 2z9
0z —(a + b) + 2bz; — z2 -1
1. z=(0,0)
_ -1 a
A= [ —(a+b) 0 ]
The eigenvalues of A are
s — ~1£v/T—4a(a+?)
2
The equilibrium point (0,0) is a stable focus if 4a(a + b) > 1, a stable node if 0 < 4a(a +b) < 1, and
a saddle if a(a + b) < 0.
2. z=(0,—a)

| -14+ab -a
=[5 7

The eigenvalues of A are A = ab and A = —1. The equilibrium point (0, —a) is a saddle if 5> 0 and a
stable node if b < 0.

3 5= (e, Sle)

A

__1 —1+4+ab —-b —a—-2b
1+ | (a+b)> —bla+bd)
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The eigenvalues of A are

—-1++/1-4bla+0b)

2
The equilibrium point (%‘_’F—’Z?, jl_‘:_—',',;ﬂ) is a stable focus if 4b(a+b) > 1, a stable node if 0 < 4b(a+b) <
1, and a saddle if b(a + b) < 0.

A=

The various cases are summarized in the following table.

(0,0) (0,—a) | (¥, S52)
b> 0, 4a(a+b) > 1, 4b(a+ b) > 1 | stable focus saddle stable focus
b>0,4a(a+b) >1,4b(a+0b) <1 | stable focus saddle stable node
b> 0, 4a(a+b) <1,4b(a+b) >1 | stable node saddle stable focus
b>0,4a(a+b) <1,4b(a+b) <1 | stable node saddle stable node

b<0,a+b>0,4a(a+b)>1 stable focus | stable node saddle
b<0,a+b>0,4a(a+b) <1 stable node | stable node saddle
b<0,a+b<0,4b(a+b)>1 saddle stable node stable focus
b<0,a+b<0,4a(a+b) <1 saddle stable node stable node

If any one of the above conditions holds with equality rather than inequality, we end up with multiple
eigenvalues or eigenvalues with zero real parts, in which case linearization fails to determine the type of the
equilibrium point of the nonlinear system. '

(c) The phase portraits of the three cases are shown in Figures 2.8 through 2.10.

i a = b= 1. The equilibrium points are

(0,0) stable focus
(0,-1) saddle
(1,-1) stable focus
The linearization at the saddle is A = [ __(1) _(1) ] The stable eigenvector is [ ! ] and the unstable

. -1
eigenvector is 1

. They are used to generate the stable and unstable trajectories of the saddle.

The stable trajectories form a separatrix that. divides,the plane into two halves, with all trajectories
in the right half approaching (1, —1) and all trajectories in the left half approaching (0, 0).

ii a=1, b= —%. The equilibrium points are

stable focus
stable node
saddle

(0,0)
(07_1)
(3

The linearization at the saddle is A, where (1 + b%?)A = [

. 0.9975
51 _0.0709

] and the unstable eigenvector is

0.0709
0.9975

—(3/2)
(1/8) (1/4)

. They are used to generate the stable and

(1/8)

]. The stable eigenvector

unstable trajectories of the saddle. The stable trajectories form a separatrix in the form of a lobe. All
trajectories outside the lobe approach (0, —1); all trajectories inside the lobe approach (0, 0).

iii a = 1, b = —2. The equilibrium points are

(0,0) saddle
(0,-1) stable node
(2,1) stable focus
. s . -1 1 . . 0.8507
The linearization at the saddle is A = [ 1 0 ] The stable eigenvector is [ —0.5257 ] and the
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unstable eigenvector is gggg; . They are used to generate the stable and unstable trajectories of

the saddle. The stable trajectories form a separatrix in the form of a lobe. All trajectories outside the
lobe approach (0, —1); all trajectories inside the lobe approach (£, §).

4
2
<N 0
-2
22 0 2 4
X
Figure 2.8: Exercise 2.6(i). Figure 2.9: Exercise 2.6(ii).
5
<N 0
-5
-5 0 5
%
Figure 2.10: Exercise 2.6(iii).
e 2.7 The system
By =33, &2 =-z1 — a2 (—1+323 — 2] + £af)
has a unique equilibrium point at the origin. Linearization at the origin yields A = _(1) } ] whose

eigenvalues are 0.5 + 0.8665. Hence the origin is unstable focus. The phase portrait is shown in Figure 2.11.
There are three limit cycles. The inner limit cycle is stable, the middle one is unstable, and the outer one is
stable. All trajectories starting inside the middle limit cycle, other than the origin, approach the inner limit
cycle as t tends to infinity. All trajectories starting outside the middle limit cycle approach the outer limit
cycle as t tends to infinity. Trajectories starting at the unstable focus or on the unstable limit cycle remain
there.

¢ 2.8 (a) The equilibrium points are the real roots of

—_ —_ 1,5
0=z, 0—-$1+Tgw1—.’l!2
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Figure 2.11: Exercise 2.7.

Hence
71(16 —2}) =0 = z; =0, £2

There are three equilibrium points at (0,0), (2,0), and (-2,0).

g B 0 1
Oz | -1+ 3z -1
To 17 .
.’B=(0,0)$A=( jl :}A:M
-1 -1 2
(O,' 0) is a stable focus.
-1++/17

0 1
z=(2,0)or (-2,0) = A= = A=
4 -1
(2,0) and (—2,0) are saddle points.

(b) The phase portrait can be sketched by constructing a vector field diagram and using the informa-
tion about the equilibrium points, especially the directions of the stable and unstable trajectories at the
saddle points. The stable and unstable eigenvectors of the linearization at the saddle points are

1 1 1 1
Ustable = = y Vunstable = =
=17 —2.5616 SEi 1.5616

T2

Find the directions of the vector fields on the two axes. On z; = 0, f = Hence the vector

field makes an angle —45 deg with the z; axis and its magnitude increases with |z2|. On z = 0, f =
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0
+ ot | Hence the vector field is parallel to the zo-axis. The sketch can be improved by finding the
—T1T 16 A
vector field at other points.
2.9 (a)

. . 1
f1=va—T, d2=— [K,z1 + K, (vg — 22) — K. sgn(z2) — K572 — K,73]

(b) At the equilibrium points, we have
0=vq — 2, 0=K,z; + K, (vq — 2) — K. sgn(z2) — Kyz2 — Ko73

From the first equation, z2 = vg4, and from the second one, z; = (K. + Kyvq + K,v%)/K,. This is the only
equilibrium point. Linearization at the equilibrium point yields

A= 0 -1
K,/m —(Kf+2Kvg+K,)/m
whose eigenvalues are
_ —(Kf + 2K,vq + KP)/mi \/(Kf + 2K,v4 +K'},)2/’I’n2 - 4K,/m
- 2

If (Kf +2K,vq + K,)? > 4mK,, the equilibrium is a stable node, and if (Ky + 2Kova + K,)? < 4mK,, the
equilibrium is a stable focus.

A

(c) For the given numerical values, the eigenvalues of the linearization are —0.0289 and —0.3461. Hence, the
equilibrium point is a stable node. The phase portrait is shown in Figure 2.12. All trajectories approach the
stable node along the slow eigenvector of the node, which has a small slope. Starting from different initial
speeds, the trajectory reaches the desired speed with no (or very little) overshoot.

(d) The eigenvalues of the linearization are —0.1875 & 0.2546; hence the equilibrium point is a stable focus.
The phase portrait is shown in Figure 2.13. All trajectories approach the stable focus. Notice the increased
overshoot compared with the previous case. For example, starting at the initial state (z; = 15, zo = 10),
the speed reaches about 36 m/sec before approaching the steady-state of 30 m/sec.

(e) The phase portrait is shown in Figure 2.14. The local behavior near the equilibrium point is not
affected since saturation will not be effective. However, far from the equilibrium point we can see that the
state of the integrator, 1, takes large values during saturation, resulting in an increased overshoot.

¢ 2.10 (a) Using the same scaling as in Example 2.1, the state equation is given by
&) = 0.5[—h(z1) + 23], &2 = 0.2(—z1 — 0.2z5 + 0.2)

where h(z;) is given in Example 2.1. The equilibrium points are the intersection points of the curves
z2 = h(z;) and 22 = 1 — 5z;. Figure 2.15 shows that there is a unique equilibrium point. Using the “roots”
command of MATLAB, the equilibrium point was determined to be £ = (0.057,0.7151).

ai‘ _ [ —0.5h/(z;) 0.5 ]

oz -0.2 —0.04

as|  _[-10461 05
dr|,_, | -02 004

(b) The phase portrait is shown in Figure 2.16. All trajectories approach the stable node. This circuit is
known as “monostable” because it has one steady-state operating point.

] = Eigenvalues = —0.9343,—0.1518 = stable node
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Figure 2.12: Exercise 2.9(c). Figure 2.13: Exercise 2.9(d).
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Figure 2.14: Exercise 2.9(e).

e 2.11 (a) Using the same scaling as in Example 2.1, the state equation is given by
I = 05[~h(.’l¢1) + :132], To = 0.2(—$1 —0.225 + 04)

where h(z;) is given in Example 2.1. The equilibrium points are the intersection points of the curves
Zo = h(z1) and z2 = 2 — 5z;. Figure 2.17 shows that there is a unique equilibrium point. Using the “roots”
command of MATLAB, the equilibrium point was determined to be Z = (0.2582,0.7091).

of| _[18173 05 _ B
oz ez [ —02 __0_04] = Eigenvalues = 1.7618,0.0155 = unstable node

(b) The phase portrait is shown in Figure 2.18. The circuit has a stable limit cycle. All trajectories, except
the constant solution at the equilibrium point, approach the limit cycle. This circuit is known as “astable.”

- e
0.8

v VY

05
06

0.4
0.2 X

0 -05
0 05 T 205 0 05 1

(=]
‘r

Figure 2.15: Exercise 2.10: equilibrium point. Figure 2.16: Exercise 2.10: phase portrait.
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Figure 2.17: Exercise 2.11: equilibrium point. Figure 2.18: Exercise 2.11: phase portrait.

e 2.12 (a) Note that T12 =T =1 = Ransz:landTu=T22=0 = ﬁ:#n:o. Hence the

state equation is given by

&1 = h(z1)[z - 2(2)] € fi(@), &2 = h(za)er — 2n(22)] ¥ fal2)

where h(z) = A cos?(7z/2) and n(z) = g~ 1(z) = (2/7)) tan(wz/2). Equilibrium points are the intersection
points of the curves zo = 27(z1) and z; = 2n(z2). Note that n'(0) = 1/Aand n'(z) = (1/)) sec?(rz/2) > 1/
Therefore, for A < 2, the two curves intersect only at the origin (0,0). For A > 2, there are three intersection
points at (0,0), (a,a) and (—a, —a) where 0 < a < 1 depends on . This fact can be seen be sketching the
curves and using symmetry; see Figure 2.19. The partial derivatives of f; and f» are given by

% = h'(z1)[x2 — 2n(z1)] — 2h(z1)7' (21), g—i = h(z1)
g—'afj = h(z2), g—i—z— = h'(a:z)[xl - 277(:1:2)] - 2h(w2)77'($2)

At equilibrium points, [z2 — 27(z1)] = 0 and [z; — 2n(z2)] = 0. Therefore, the Jacobian matrix reduces to

of _ —27'(b) 1
% - h(b) [ 1 "277’(b) ]

z=(b,b)
where b =0, a, or —a, depending on the equilibrium point.

of -2 A
or A =2

] = Eigenvalues = -2+ A
z=(0,0)

For )\ < 2, the unique equilibrium point at (0,0) is a stable node. For A > 2, the equilibrium point (0, 0) is
a saddle. For A > 2 there are two other equilibrium points at (a,a) and (—a, —a).

% = h(a) [ _21;,.((1) -—21;'(a) ] = Eigenvalues = h(a)[—27'(a) £ 1]

z=(a,a)

Tt is not hard to see from the sketch of the curves o = 2n(x;) and z; = 2n(z2) that at the intersection
point (a, a), the slope 27'(a) > 1. Hence, (a,a) is a stable node. Similarly, it can be shown that (—a, —a) is
a stable node.

(b) The phase portrait is shown in Figure 2.20. The stable trajectories of the saddle point at the ori-
gin form a separatrix that divides the plane into two regions. Trajectories in each region approach the stable
node in that region.
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Figure 2.19: Exercise 2.12: equilibrium point. Figure 2.20: Exercise 2.12: phase portrait.

e 2.13 (a) Using Kirchhoff’s Voltage law, we obtain

. 1
T = m[vz — v — g(v2)]

Using Kirchhoff’s Current law, we obtain

. 1 V2 1
932—02{ R, Rl[’vz n 9(”2)]}

Thué, the state equation is

. 1
T = Ciks [—z1 + 22 — 9(2)]
Ty = 1 T — 1 x ! T + ! (z2)
2T GR T GR T GR T GR T
(b) For the given data, the state equation is given by
£ = —z1+ 32 — g(T2), Iz =21 — 222 + g(22)

g(z2) = 3.234z, — 2.195z3 + 0.666x3
The system has a unique equilibrium point at the origin. The Jacobian at the origin is given by

of
oz

_ [ -1 -2.234
21202320 1 1234

Hence the origin is an unstable focus. The phase portrait is shown in Figures 2.21 and 2.22 using two different
scales. The system has two limit cycles. The inner limit cycle is stable, while the outer one is unstable. All
trajectories starting inside the outer limit cycle, except the origin, approach the inner one. All trajectories
starting outside the outer limit cycle diverge to infinity.

] = Eigenvalues = 0.117 & 0.993;

e 2.14 The system is given by

:i:l = T3
2 = —kz1—cx2 —n(21,22)
where )
urmg sign(zz), for |z2| > 0
n(z1,22) = { —kz1, for zo = 0&|z1| < psmg/k
—psmg sign(z), for z3 = 0&|z1| > psmg/k
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Figure 2.21: Exercise 2.13. Figure 2.22: Exercise 2.13.

For z, > 0, the state equation is given by

Ty = o

£y = —kxy —cxy — ppmg
while, for z2 < 0, it is given by

.’i)l = X2

2 = —kzy —cz2 + prmg

In each half, we can determine the trajectories by studying the respective linear equation. Let us start with
zo > 0. The linear state equation has an equilibrium point at (—puxmg/k,0). Shifting the equilibrium to
the origin, we obtain a linear state equation with the matrix [ _Ok _lc , whose characteristic equation is
A2 +cA+ k = 0, where k and c are positive constants. The equilibrium point is a stable focus when 4k > c2
and a stable node when 4k < 2. We shall continue our discussion assuming 4k > c. Trajectories would tend
to spiral toward the equilibrium point (—uxmg/k,0). It will not actually spiral toward the point because
the equation is valid only for z; > 0. Thus, for any point in the upper half, we can solve the linear equation
to find the trajectory that should spiral toward the equilibrium point, but follow the trajectory only until it
hits the z;-axis. For zo < 0, we have a similar situation except that trajectories tend to spiral toward the
point (urmg/k,0). On the z;-axis itself, we should distinguish between two regions. If a trajectory hits the
z,-axis within the interval [—usmg/k, psmg/k], it will rest at equilibrium. If it hits outside this interval,
it will have £ # 0 and will continue motion. Notice that trajectories reaching the x;-axis in the interval
x7 > psmg/k will be coming from the upper half of the plane and will continue their motion into the lower
half. By symmetry, trajectories reaching the z;-axis in the interval z; < —py,mg/k will be coming from the
lower half of the plane and will continue their motion into the upper half. Thus, a trajectory starting far
from the origin, will spiral toward the origin, until it hits the z;-axis within the interval [—p,mg/k, usmg/k].
The phase portrait is sketched in Figure 2.23.

¢ 2.15 The solution of the state equation

&1 = z2, z1(0) =110
22 = k, 22(0) =120
where k = %1, is given by
z2(t) = kt+ 2z
z1(t) = %ktz + x20t + T10
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Figure 2.23: Exercise 2.14.

Eliminating ¢ between the two equations, we obtain

1
:1:%+c

$1=ﬂ'

where ¢ = 19 — 73¢/(2k). This is the equation of the trajectories in the z;—z, plane. Different trajectories
correspond to different values of ¢. Figures 2.24 and 2.25 show the phase portraits for v = 1 and u = -1,
respectively. The two portraits are superimposed in Figure 2.26. From Figure 2.26 we see that trajectories
can reach the origin through only two curves, which are highlighted. The curve in the lower half corresponds
to © = 1 and the curve in the upper half corresponds to u = —1. We will refer to these curves as the
switching curves. To move any point in the plane to the origin, we can switch between £1. For example,
to move the point A to the origin, we apply u = —1 until the trajectory hits the switching curve, then we
switch to u = 1. Similarly, to move the point B to the origin, we apply u = 1 until the trajectory hits the
switching curve, then we switch to u = —1. When the trajectory reaches the origin we can keep it there by
switching to u = 0 which makes the origin an equilibrium point.

4 4

A

\

-4 -2 0 2 4 -4 -2 0 2 4
X X
Figure 2.24: Exercise 2.15. Figure 2.25: Exercise 2.15.

e 2.16 (a) The equilibrium points are the roots of
0=z1(1 —z1 —azs), 0=bzz(z1 —x2)

From the first equation, we have 7 = 0 or ; = 1 —ax,. Substitution of z; = 0 in the second equation results
in £ = 0. Substitution of £; = 1 — az2 in the second equation results in z2(1 — axy — z2) = 0 which yields
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Figure 2.26: Exercise 2.15.

z9 = 0 or 72 = 1/(1+a). Thus, there are three equilibrium points at (0,0), (1,0), and (1/(1+a), 1/(1+a)).
The Jacobian matrix is given by

of _ [ 1-2z, —az, —azx; ]

ox bz, bzy — 2bz,
of _[1 O] of _[—-1 —a] of 1 [—~1 —a]
0z |(0,0) 0 0]’ Oz (1.0) 0 b |’ oz (v ok 1+a| b -0

At the equilibrium point (0,0) the matrix has a zero eigenvalue; hence linearization fails to determine the
type of the equilibrium point. At (1,0), the equilibrium point is a saddle. At (1—4_1—‘;, lj_—a), the eigenvalues
are

—(1+b)+v1—2b+ b2 —4ab
A2 =
2(1+a)

Hence, ('1%7 T—}-—a) is a stable node if 1 — 2b + b — 4ab > 0 and a stable focus if 1 — 2b + b? — 4ab < 0.

The phase portrait is shown in Figure 2.27. The equilibrium point (3, 1) is a stable focus that attracts all
trajectories in the first quadrant except trajectories on the z;-axis or the 5 axis. Trajectories on the z;-axis
move on it approaching the saddle point at (1,0). Motion on the z;-axis corresponds to the case when there
are no predators, in which case the prey population settles at ; = 1. Motion on the z, axis corresponds
to the case when there are no preys, in which the case the predator population settles at zo = 0; i.e., the
predators vanish. In the presence of both preys and predators, their populations reach a balance at the

equilibrium point (3,3)-
© 2.17 (1) Assume € > 0 and let 2; =y, 2 = g, and V(z) = z? + 3.
I = T2, Ty = —x; + 81:2(1 - :Bf - IE%)

f(x)-VV(z) = 2exi(1 — 22 — 22) = 2ex2(1 - V)
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Figure 2.27: Exercise 2.16.

Hence, f(z)- VV(z) < 0 for V(z) > 1. In particular, all trajectories starting in M = {V(z) < 1} stay in M
for all future time. M contains only one equilibrium point at the origin. Linearization at the origin yields

the matrix _01 ; . Hence, the origin is unstable node or unstable focus. By the Poincaré-Bendixson

criterion, there is a periodic orbit in M.

(2) Let V(z) = 22 + 23.
f(z) - VV(z) = 223(2 — 372 — 223) = 422(1 — 2% — z2) — 22223 < 423(1 — 2% — 23)

Hence, f(z)- VV(z) < 0 for 27 + 3 > 1. In particular, all trajectories starting in M = {V(z) < 1} stay
in M for all future time. M contains only one equilibrium point at the origin. Linearization at the origin
yields the matrix _?1 ; , whose eigenvalues are 1 and 1. Since f(z) is an analytic function of z, we

conclude that the origin is unstable node. By the Poincaré-Bendixson criterion, there is a periodic orbit in M.

(3) Let V(z) = 322 + 22122 + 223.
f(z)-VV(z) = (621 +2x2)zs + (221 + 4x2)[—21 + T2 — 2(21 + 272)73)
—2:1:% + 4z129 + 6:1:% —4(zq + 2m2)2z§
—2(13% + x%) + 4:132(1‘1 + 2.’132) - 4(1?1 + 21’2)2.’17%
= —2(z +23) +1-[1-273(z1 + 222))?
< —2(z}+23)+1<0, fora?+a3>1

Choose a constant ¢ > 0 such that the surface V(z) = c contains the circle {z} + 23 = 1} in its interior.
Then, all trajectories starting in M = {V(z) < c} stay in M for all future time. M contains only one

equilibrium point at the origin. Linearization at the origin yields the matrix [ _":)1 i ], whose eigenvalues
are (1+3+/3)/2. Hence, the origin is unstable focus. By the Poincaré-Bendixson criterion, there is a periodic
orbit in M.
(4) The equilibrium points are the roots of

0 = 1 + 22 — z1 max{|z1|, |z2|}, 0 = —2z; + 22 — z2 max{|z1], |z2|}
From the first equation, we have z2 = z;(max{|z1|, |z2|} — 1). Substitution in the second equation results in

0=-22, —T1 (ma.x{l:v1|, I:L‘zl} - 1)2 = —:L'1[2 + (max{|x1|, la:2|} - 1)2] =2 11=0 =21 = 0
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Hence there is a unique equilibrium point at the origin. Linearization at the origin yields the matrix
A= [ 52 } ] whose eigenvalues are 1+ j1.4142. Hence, the origin is an unstable focus. Now consider
V(z) = 22 + 3.
VV-f = 2z(z1+ a2 — zymax{|z1], |22]}) + 222(-221 + 22 — 22 max{|z1], |22]})
= 2% -2z 25 + 222 — 2(2? + 22) max{|z1], |z2|}

= 2[2TPz — |lz||} max{|z:],|z2}], where p=[ 1 —0-5]

-05 1
The matrix P is positive definite with maximum eigenvalue 1.5. Therefore,
VV - f < 2[L5|l2ll; - |lzll; max{|z:], |e2[}] < O, for max{|z1],|z2[} > 1.5

Thus, by choosing ¢ large enough, VV - f will be negative on the surface {V(z) = c}. Hence, all trajectories
starting in the set M = {V(z) < ¢} stay in M for all future time and M contains a single equilibrium point
which is unstable focus. It follows from the Poincaré-Bendixson’s criterion that there is a periodic orbit in
M.

e 2.18

(a) .
V = zody + g(21)%1 = —229(x1) + 229(21) =0

(b) For small ¢ > 0, the equation V(z) = c defines a closed curve that encloses the origin. Since V=0a
trajectory starting on the curve must remain on the curve for all ¢. Moreover, from #; = z2, we see that the
trajectory can only move in the clockwise direction. Hence, a trajectory starting at any point on the closed
curve V(z) = ¢ must move around the curve until it comes back to the starting point. Thus, the trajectory
is a periodic orbit.

(c) Extension of (b) because V(z) = c is a closed curve for all ¢ > 0.
(d) V(z) = {22 + G(z1) = constant. At z = (4,0), V = G(A). Thus
323(t) + G(z1()) = G(A) = 22(t) = £V/2(G(4) - G(=:1(2))]

(e) Starting from &; = 2, we have

dxl

V2[G(4) - G(z1)]
for o > 0. Calculating the line integral of the nght hand side in the upper half of the plane from (—A4,0)
to (4,0), we obtain

dt =

T 4 dy _ A dy
2~ /_A V2[G(A) = GW)] =T= 2\/5/0 VG(A) - G(y)

where we have used the fact that G(z;) is an even function.

(f) We can generate the trajectories using the equation in part (d). For each value of A, we solve the
equation to find z» as a function of z;. The function G(z;) has a minimum, a maximum, or a point of
inflection at each equilibrium point of the system. In particular, It has a minimum at z; = 0 corresponding
to the equilibrium point at the origin. Starting from small values of A, the equation will have a solution
defining a closed orbit. As we increase the value of A, the equation will continue to define a closed orbit until
A reaches the level of a maximum point of G(z,). For values of A higher than the maximum, the curves
will not be closed. Depending on the shape of G(z,), the equation may have multiple solutions defining
trajectories in different parts of the plane. The conditions of part(c) ensure that G(z;) will have a global
minimum at z; = 0.
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e 2.19 The phase portraits can be generated by solving the equation of the previous exercise either graph-
ically or using a computer. We will only give the function G(z;) and calculate the period of the trajectory

through (1, 0).

M )
G(y)=/ sinz dz =1— cosy
0
T= 2\/'/ m
(2)

G(y) = / (z+23) dz = —y + 4y

G(y) = oo as |y| = oo and zg(z) > 0 for all 2. Hence, every solution is periodic.

T= 2\/'/ \/-—-y mw

3) .
G) = [+ d =yt
0

G(y) = oo as |y| — oo and zg(z) > 0 for all z. Hence, every solution is periodic.

B 1

e 2.20

1)
O L 0f _ _

69:1 8x2
By Bendixson’s criterion, there are no periodic orbits.
(2) The equilibrium points are the roots of
0=az1(-1+23+2}), O0=uzs(-1+2}+23)

The system has an isolated equilibrium point at the origin and a continuum of equilibrium points on the
unit circle 22 4+ 22 = 1. It can be checked that the origin is a stable node. Transform the system into the
polar coordinates 1 = 7 cos#, z; = rsinf. It can be verified that

F=—r(l —r?)

For r < 1, every trajectory starting inside the unit circle approaches the origin as t — oco. For r > 1, every
trajectory starting outside the unit circle escapes to co as t — oco. Thus, there are no limit cycles.

(3) The equilibrium points of the system are the roots of
0=1-z22, O0=2

These equations have no real roots. Thus, there are no equilibrium points. Since, by Corollary 2.1, a closed
orbit must enclose an equilibrium point, we conclude that there are no closed orbits.
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(4) The z;-axis is an equilibrium set. Therefore, a periodic orbit cannot cross the z;-axis; it must lie
entirely in the upper or lower halves of the plane. However, there are no equilibrium points other than the
z,-axis. Since, by Corollary 2.1, a periodic orbit must enclose an equilibrium point, we conclude that there
are no periodic orbits.

(5) The equilibrium points are the roots of

0==x3cosz;, O0=sinz;
The equilibrium point are (+nw,0) for n = 0,1,2,---. Linearization at the equilibrium points yields the
matrix [ 2 g where a = +1. Hence, all equilibrium points are saddles. Since, by Corollary 2.1, a

periodic orbit must enclose equilibrium points such that N — .5 = 1, we conclude that there are no periodic
orbits.

e 2.21
(a) Let
_ Ty +b
V(z) =z P
The function V(z) is negative in D and the curve V(z) = 0 is the boundary of the set D.
f(z) -VV(z) = —cz1(z1 + a) + (—i%[—xl + z2(z1 + a) — b)

Evaluating f(x) - VV(z) on the curve V(z) = 0 yields
(@) VV(@)y (z)=0 = —c21(21 +a) <0, Vz €D

Hence, trajectories on the boundary of D must move into D, which shows that trajectories starting in D
cannot leave it.

(b) o, o
1 2 __
6171 b_i;?;_ 1+$2<0, VzeD

By Bendixson’s criterion, there can be no closed orbits entirely in D. Since trajectories starting in D cannot
leave it, a closed orbit through any point in D must lie entirely in D. Thus, we conclude that there are no
closed orbits through any point in D.

e 2.22 (a) The value of &2 on the z;-axis is T2 = bz? > 0. Thus, trajectories starting in D cannot leave it.

b)
( o , oh

8w1 3272
By Bendixson’s criterion, there can be no closed orbits entirely in D. Since trajectories starting in D cannot
leave it, a closed orbit through any point in D must lie entirely in D. Thus, we conclude that there are no
closed orbits through any point in D.

=a-z2—-c<—(c—a)<0, Yz€D

e 2.23
: _—2-‘_ B [ -2a or |z;| >
k<op 2 4 Of <0, Vz

6 T 6272
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By Bendixson’s criterion, there are no closed orbits.

(b) Consider the case k > 2b. We shall show the existence of a periodic orbit by imitating the steps of
Example 2.9. We track the trajectory starting at point A = (0,p); see Figure 2.28. At the starting point,

]
I
1
I
|
l
|
1
1
|
l
|
]
o [o] X,
1
|

D

|
!
1
|
|
i
|
I
i
|
1

Figure 2.28: Exercise 2.23.

fi =z2 > 0and f» = (k — 2b)azz > 0. So, the trajectory starts with a positive slope. Within the segment
0 < z; < 1, the trajectory will continue to have a positive slope, provided p is large enough, until it arrives
at B = (1,8(p)). As the trajectory leaves B, we have fo = —2abzs — asz; < 0. Thus, the trajectory will
turn around forming the curve BCD. Let D = (1, —+(p)) and consider the motion on the curve BCD. Let
V(x) = azx% + .’E% Then .

V =2az170 + 2z (—a2x; — 2abzs) = -—4ab:c§ <0

V(D) -V(B) = /BDV dt

Noting that V(D) — V(B) = a? + v?(p) — a® — 5%(p), we obtain

dt z3

2 2 2 2

- = —4ab = dzo = 4ab — 2 4

7 (p) - A(p) @ /BD T2 dzs T2 =24 /BD a?zq + 2abz, 2

As p increases, the arc BCD moves to the right and the domain of integration increases. It follows that
v2(p) — B%(p) decreases as p increases and

Jim {7*(p) - B*(p)} = —00 a5 p = 00

Thus, for sufficiently large p, by the time the trajectory reaches the point E = (0, —4(p)) on the z,-axis, we
have é(p) < p. Similar to Example 2.9, we form a closed curve of the arc ABCDE, its reflection through
the origin, and segments on the zz-axis connecting these arcs. Let M be the region enclosed by this closed
curve. Every trajectory starting in M stays in M for all future time. Linearization at the origin yields the

matrix _(;2 kj 2% | which has both eigenvalues in the right-half plane. Thus, the origin is unstable

node or unstable focus. By the Poincaré-Bendixson criterion, there is a periodic orbit in M.
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e 2.24 Suppose M does not contain an equilibrium point. Then, by the Poincaré-Bendixson criterion, there
is a periodic orbit in M. But, by Corollary 2.1, the periodic orbit must contain an equilibrium point: A
contradiction. Thus, M contains an equilibrium point.

e 2.25 Verifying Lemma 2.3 by examining the vector fields is simple, but requires drawing several sketches.
Hence, it is skipped.

* 2.26
1) Linearization at the origin yields 0 0 . Hence, the origin is not hyperbolic. The index of the
0 -1

origin is zero. This can be easily seen by noting that f; = z2 is always nonnegative. Clearly, the vector field
cannot make a full rotation as we encircle the origin because this will require f; to be negative.

(2) Linearization at the origin yields [ 8 g ] Hence, the origin is not hyperbolic. The index of the origin

is two. This can be seen by sketching the vector field along a closed curve around the origin.
e 2.27 (1) The equilibrium points are the real roots of

0=z, 0=p(x+2)— 22— 2} — 322z,

T2=0 = O0=z:(p—-2%) = z;=0o0r 22=p

For p > 0, there are three equilibrium points at (0,0), (,/%,0), and (—/f, 0).
A PR Las

oz~ | p—3z}—-6r172 p—1-3z?

of
oz

=[2 MilJ = Mz=-1, p = (0,0)isasaddle
(00)

o [0
oz (VE0) —2ll' -1 _2”

Similarly, (—,/z,0) is a stable node. For p < 0, there is a unique equilibrium point at (0, 0).

of
oz

] = Mg2=-2u, -1 = (y/n,0)is a stable node

0 1

= [ p op—1 ] = M2=-1,p = (0,0)is a stable node
(0,0)

Thus, there is supercritical pitchfork bifurcation at u = 0.

(2) The equilibrium points are the real roots of
0=—a+22, 0=—(1+p)21 +2uzs — i +2(z2 — pz1)®

sp=a8 = 0=z {-1+ (2} - p)[u+2:3(z? - p)?]}

For all values of p, there is an equilibrium point at (0,0). At u = 0, there are two other equilibrium points
at (a,a®) and (—a, —a®), where a® = 0.5. It can be checked that these two equilibrium points are saddles.
By continuous dependence of the roots of a polynomial equation on its parameters, we see that there is a
range of values of u around zero for which these two saddle points will persist. We will limit our attention
to such values of p and study local bifurcation at u = 0.

of
oz

_ [ 0 1
(0,0) _(1 + p’z) 2”

] = /\1,2=/.l,:l:j
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Figure 2.29: Exercise 2.27(2).

Hence, the origin is a stable focus for 4 < 0 and unstable focus for 4 > 0. The phase portrait for different
values of u is shown in Figure 2.29. For pu < 0, there is a stable focus at the origin and unstable limit cycle
around the origin. The size of the limit cycle shrinks as p tends to zero. For u > 0, the origin is an unstable
focus and the limit cycle disappears. Hence, there is a subcritical Hopf bifurcation at p = 0.

(3) The equilibrium points are the real roots of

0=$2, O=u——zg—zf—2a:1x2

T2=0 = zi=p

When g < 0, there are no equilibrium points. When p > 0, there are two equilibrium points at (,/z,0) and

(_\/ﬁa O)

of 0 1 .

il = =-1, -2

5z | o [ _2i —(142VE) ] = A2 , =2y = (v/m,0) is a stable node
of = [ 0 1 ] = M2=-12/p = (/n0)isasaddle
8z|_ o) L2VE —(1-2yA) nrm ’

There is a saddle-node bifurcation at u = 0.

(4) The equilibrium points are the real roots of

0=12, O0=—(14+p?)z;+2uzs + pzs — 3z,
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22=0 = 0=—(1+p%)z; + pz’
For all values of u, there is an equilibrium point at (0,0). For p > 0 there are two other equilibrium points

at (a,0) and (—a,0), where a = /(1 + p?)/p.

of
or

0 1

©00) ["(1+N2) 2,u] 12=4px)

Hence, the origin is a stable focus for 4 < 0 and unstable focus for u > 0.

21 -?- p?) (-1 +1N2)/M ] = M= % [' <1 —M,ﬂ’) + \/(1 —“m)z +8(1 +u2)j

Hence, (a,0) and (—a,0) are saddle points. The phase portrait for different values of y is shown in Fig-
ure 2.30. For u < 0, there is a stable focus at the origin. For x> 0, the origin is an unstable focus and
there is a stable limit cycle around the origin. The size of the limit cycle shrinks as p tends to zero. Hence,
there is a supercritical Hopf bifurcation at 4 = 0. Also, as u becomes positive, the saddle points appear on
the z;-axis at z; = ++4/(1 + p2)/p. The saddle points start at infinity and they move toward the origin as
 increases, until they reach £2 at 4 = 1. Then they move again toward infinity. For p = 0.2, the phase
portrait is shown in a larger area that includes the saddle points.

?i
oz

(£a,0) Bl [

u=-01

2 2
1 1
[Sal) N0
-1 -1
-2 -2
-2 -1 0 1 2 -2
X
p=0.2
2 5
1
N0 N0
-1
-2 -5
-2 -1 0 1 2 -5 (V] 5
X X1

Figure 2.30: Exercise 2.27(4).

(5) The equilibrium points are the real roots of

0=z, 0=ﬂ,($1 +x2)—x2-—xi’+3wfa:2
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z2=0 = 0=ux(p—z?)

For all values of u, there is an equilibrium point at (0,0). For x4 > 0 there are two other equilibrium points
at (y/B,0) and (—/g,0).
of
oz

_ [ 0 1
(0,0) M /‘I’_]'

Hence, the origin is a stable node for p < 0 and a saddle for u > 0.

of 0 1 ] _ —(1—4p) £ /(1 —4p)%> - 8u
= M= 5

} => M2=-1,p

The following table gives the type of the equilibrium points (,/%,0) and (—./&, 0) for various positive values
of u.

Range Type

0 < p<0.067 Stable node
0.067 < u < 0.25 | Stable focus
0.25 < 1 < 0.933 | Unstable focus
0.933 < i Unstable node

Thus, there is a supercritical pitchfork bifurcation at g = 0. We also examine p = 0.25, where the equi-
librium points (,/%,0) and (—/&,0) change from stable focus to unstable focus. The phase portraits for
p = 0.24 and p = 0.26 are shown in Figure 2.31. As u crosses 0.25 new stable limit cycles are created around
the points (\/,0) and (—/&,0). Thus, there is a supercritical Hopf bifurcation at p = 0.25.

n=0.24 n=0.26
1 1
0.5 0.5
< 0 o
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

x
X

Figure 2.31: Exercise 2.27(5).

(6) The equilibrium points are the real roots of
0=z, O=/.I,($1 + z3) — 22 -—.’1:% — 21129

z2=0 = 0=z1(p—21)
There are two equilibrium points at (0,0) and (g, 0).

of
oz

=[0 1
(0,0) bop=1

] = A1,2 = _'17 M
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Hence, the origin is a stable node for x < 0 and a saddle for p > 0.

of

0 1
5; = [ ] = A1,2 =_1’ —p

(u,O)_ —# =+

Hence, (u,0) is a saddle for 4 < 0 and a stable node for ;1 > 0. There is a transcritical bifurcation at p = 0.

e 2.28 (a) The equilibrium points are the real roots of
1
0=- g + tanh(Az;) — tanh(Az2), 0=-— %Il'z + tanh(Az1) + tanh(Az;)

By adding and subtracting the two equations, we see that the equilibrium points are the intersections of the
two curves ) .

T2 = —11 + 27tanh(\z;), 1 = z2 — 27tanh(\z3)
Clearly there is an equilibrium point at the origin (0,0). By plotting the two curves for different values of AT
(see Figure 2.32), it can be seen that the origin is the only intersection point. In fact, the two curves touch
each other asymptotically as A7 — oo. Thus, we conclude that the origin is the only equilibrium point. Next
we use linearization to determine the type of the equilibrium point.

1
of [ T t@weey  awten
dz Aot R Y v
cosh?(Az;1) T cosh®(\z2)
A -+ -A _
B_f = - , Eigenvalues: Q—T——-l-l EX D
0z |, A _ ;1__~+/\ T

Hence, the origin is a stable focus for A7 < 1 and unstable focus for A7 > 1. To apply the Poincare-Bendixson
criterion when A7 > 1, we need to find a set M that satisfies the conditions of the criterion. We do it by
transforming the equation into the polar coordinates

’ T
r=4/2?+23, 6=tan™’ <ﬁ)

F=— ;1_-7' + cos(#)[tanh(Ar cos(€)) — tanh(Ar sin(6))] + sin(@)[tanh(Ar cos(f)) + tanh(Ar sin(6))]
Using | tanh(-)| < 1, |cos(:)] £ 1, and |sin(-)| < 1, we see that
r< - -l-r +4
T

Choosing r = ¢ > 47, we conclude that on the circle r = ¢, # < 0. Hence, vector fields on r = c point to the
inside of the circle. Thus, the set M = {r < ¢} has the property that every trajectory starting in M stays
in M for all future time. Moreover, M is closed, bounded, and contains only one equilibrium point which is
unstable focus. By the Poincare-Bendixson criterion, we conclude that there is a periodic orbit in M.

(b) The phase portrait is shown in Figure 2.33. The origin is an unstable focus and there is a stable
limit cycle around it. All trajectories, except the trivial solution x = 0, approach the limit cycle asymptoti-

cally.

(c) The phase portrait is shown in Figure 2.33. The origin is a stable focus. All trajectories approach
the origin asymptotically.

(d) For A\ < 1, there a stable focus at the origin. For A7 > 1, there is an unstable focus at the origin
and a stable limit cycle around the origin. Hence, there is a supercritical Hopf bifurcation at A7 = 1.
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Figure 2.32: Exercise 2.28.

A=2,t=1 A=051t=1
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1 1
N0 A1)
-1 -1
-2 -2

-2 -1 0 1 2 -2 -1 0 1 2

X X

Figure 2.33: Exercise 2.28.

e 2.29 (a) The equilibrium points are the real roots of

4179 _ T2
T+z2 0T (1 1+z§)

From the second equation we have z; = 0 or z2 = 1+ z2. The first equation cannot be satisfied with z; = 0.
. Substitution of £z = 1+ 22 in the first equation results in z; = a/5. Thus, there is a unique equilibrium
point at ((a/5),1+ (a/5)?). The Jacobian matrix is given by

1 _ A4z 8:1:2]::2 _ A4z
1 14z + (1+z%)2 1+z3

O=a—z; —

2bz2z b
o(1- vi) o o

of o [ _5+3(a/5)? —4(a/5) ] 1
02 |((a/s)1+(ass)r) 1+ (a/5)? 2b(a/5)>  =b(a/5) | T 1+ (a/5)?
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The characteristic equation of B is
S>+Ps+v=0

where
B =5—3(a/5)+b(a/5), v=>5[1+(a/5)%]b(a/5)

We have v > 0. If B < 0, the eigenvalues will be real and positive or complex with positive real parts; hence
the equilibrium point will be unstable node or unstable focus. 3 is negative if b < 3(a/5) — 25/a. To apply
the Poincare-Bendixson criterion, we need to choose the set M. Figure 2.34 sketches the two curves whose
intersection determines the equilibrium point. On the sketch we identify a rectangle with vertices at A, B,
C and D. On the line AB, &> > 0; hence the vector fields point upward. On the line BC, &; < 0; hence the
vector fields point to the left. On the line CD, &3 < 0; hence the vector fields point downward. On the line
DA, i, > 0; hence the vector fields point to the right. Thus, taking the set M to be the rectangle ABCD, we
see that every trajectory starting in M stays in M for all future time. Moreover, M is closed, bounded, and
contains only one equilibrium point which is unstable node or unstable focus. By the Poincare-Bendixson
criterion, we conclude that there is a periodic orbit in M.

0=a-x1-‘4x1x2/(1+xf)

Figure 2.34: Exercise 2.29.

(b) For a = 10 and b = 2, we have b < 3a/5 — 25/a. The equilibrium point is (2,5) and it is unstable
focus. The phase portrait is shown in Figure 2.35. The system has a stable limit cycle. All trajectories,
except the equilibrium solution z = (2, 5), approach the limit cycle asymptotically

(c) For a = 10 and b = 4, we have b > 3a/5 — 25/a. The equilibrium point is (2,5) and it is a stable
focus. The phase portrait is shown in Figure 2.35. All trajectories approach the equilibrium point asymp-
totically.

(d) For b < 3a/5 — 25/a, B is negative. Moreover, when b is close to 3a/5 — 25/a, B will be close to
zero. Hence, 4y > (% and the equilibrium point is unstable focus. As we saw from the phase portrait, there
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Figure 2.35: Exercise 2.29.

is a stable limit cycle around the equilibrium point. For b > 3a/5 — 25/a, § is positive. Once again, when b
is close to 3a/5 — 25/a, B will be close to zero. Hence, 4y > 2 and the equilibrium point is a stable focus.
There is a supercritical Hopf bifurcation at b = 3a/5 — 25/a.

e 2.30 (a) The equilibrium points are the roots of

HmT2 HmT1T2
0= HmT2__ _ - ) HmT1T2
((k,,, ¥ 2) ) 21, 0=d(z2s - 22) Y (km + 22)

The first equation has two solutions: z; = 0 or the solution of d = pmz2/(km + z2), which we denote by a.
When d < i, there is a unique solution a. Substitution of £; = 0 in the second equation yields z3 = .
Substitution of z2 = «a in the second equation yields z; = Y (z25 — a), which will be a feasible solution if
a < zay; that is, d < pmTas/(km + 227). Thus, when d < pm@az/(km + T25), there are two equilibrium
points at (0,z27) and (Y (z27 — a),a). When d > pnx27/(km + 25), there is a unique equilibrium point at

(O,SEzf)‘
B pmZT2 km pimT1
af km+T2 d (km+32;§
% - mT2 k a:
- — — mMmTl
Yik,,,+a:2; d Yikm-!'zz;
BmZT2y
of _ km+z2s d 0
Oz (0,225) 7:&-}31_3 -d
Y (km+z2f

Hence, (0,72y) is a saddle if d < pmz27/(km + z25) and a stable node if d > pmx2s/(km + z25).

0 kmpmY (227 —a)
a_f ilc,,.+oz;rz

ax _ K fim -
(Y(z27—a),a) -& -d- ‘7’2—,.%%#

The eigenvalues are —d and —kmpm(z25 — @)/(km + ). For d < pmT2s/(km + z2f), (Y (227 — @),a) isa
stable node. For the given numerical data, umz2¢/(km + z25) = 0.4878. When d > pn,, there is a unique
equilibrium point at (0, z2¢), which is a stable node.

(b) The bifurcation diagram is shown in Figure 2.36. As d increases toward 0.4878, the saddle at (0, z2y)
and the stable node at (Y (225 — @), @) collide and bifurcate into a stable node at (0, z2y).
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Figure 2.36: Exercise 2.30: Bifurcation diagram. Figure 2.37: Exercise 2.30.

(c) For d = 04, @ = kmd/(tm — d) = 0.4. Since d = 0.4 < 0.4878, there is a saddle at (0,4) and a
stable node at (1.44,0.4). The phase portrait is shown in Figure 2.37.

¢ 231 (a) Let
HmT2

Hizz) = km + z2 + ki 23

The equilibrium points are the roots of

0==zi[p(z2) —d], 0=d(z2;—22)— xlllé.'z:g)

From the first equation, z; = 0 or u(z3) =d.
=0 = x5= Zof

uz2) =d = 31 =Y(025 — 22)

By sketching the function u(z2), it can be seen that if d < max;,>o{u(2)}, the equation d = pu(z2) will have
two solutions. Let us denote them by a; and a3. In this case, there are three equilibrium points at (0, z2f),
(Y (22§ — 1), 1), and (Y (z25 — a2), a2), provided 25 —a; and z25 — oz are nonnegative numbers. If one of
these numbers is negative, the corresponding equilibrium point is not feasible. If d > max,,>o{u(z2)}, the
equation d = u(z2) has no solutions. In this case, there is only one equilibrium point at (0, z2¢). The plot of
u as a function of z2 is shown in Figure 2.38. By differentiation, it can be seen that p has a maximum value
(tm/km/k1)] (2km + \/km /K1) = 0.3455 at £2 = \/km/k1 = 0.4472. When d > 0.3455, there is a unique
equilibrium point at (0,4), and when d < 0.3455 there are three equilibrium points at (0,4), (0.4(4—a;1), 1),
and (0.4(4 — a2), az), where a; < 0.4472 and a2 > 0.4472 are the solutions of d = pu(z2). In the case of az,
the equilibrium point (0.4(4 — a2), @2) is not feasible if az > 4. It can be checked that p = 0.1653 at z» = 4.
Hence, for d < 0.1653, there are only two equilibrium points at (0,4) and (0.4(4 — @;),1). The Jacobian
matrix is given by

—d+ —fmZ2__ Lm 1 (km —k23) —d+4 0522 0.521(0.1-kz7)
of km+z2+ki123 (km+z2+k123)? 0.14+z2+0.5z3 (0.1+z2+0.5z3)
Oz S = B3l —kad) —0.52, g _0521(0.1-ks?

Y (km+z2+k123) Y (km+z2+k123)? 0.4(0.1+z2+0.5z3) 0.4(0.1+z2+0.5z3)

At z = (0,4), the Jacobian matrix is
’ —d +0.1653 0
* —d
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When d > 0.1653, the equilibrium point is a stable node. When d < 0.1653, it is a saddle. At z =
(0.4(4 — a1),a1), the Jacobian matrix is

0 d2BY
-d)Y -d-d?B

where 8 = (225 — @1)(km — k102)/pma? > 0. The eigenvalues of this matrix are —d and —d?3. Hence, the
equilibrium point is a stable node. At z = (0.4(4 — a2), a2) with az < 4, the Jacobian matrix is

0 d*yY
—d)Y  —d—d?y

where v = (25 — @2)(km — k102)/uma3 < 0. The eigenvalues of this matrix are —d and —d?y. Hence, the
equilibrium point is a saddle. In summary, we have the following three cases:

e When d > 0.3455, there is one equilibrium point at (0,4) which is a stable node.

e When 0.1653 < d < 0.3455, there are three equilibrium points: a stable node at (0,4), a stable node
at (0.4(4 — a1), 1), and a saddle at (0.4(4 — az), az).

e When d < 0.1653, there are two equilibrium points: a saddle at (0,4) and a stable node at (0.4(4 —
ag )1 al)'

| Saddle_ _ Stable node

\
\

\
\ Saddle

\

X \

\
\

Stablenode

X 0.1653 0.3455 d

Figure 2.38: Exercise 2.31. Figure 2.39: Exercise 2.31: Bifurcation diagram.

(b) The bifurcation diagram is shown in Figure 2.39. There is a saddle-node bifurcation at d = 0.3455. At
d = 0.1653 there is a type of bifurcation that is not shown in Figure 2.28. A saddle point bifurcates into a
stable node and a new saddle is created.

(c) When d = 0.1, there are two equilibrium points: (0,4) is a saddle and (1.59,0.0251) is a stable node.
The phase portrait is shown in Figure 2.40. The stable trajectories of the saddle are on the zj-axis. All
trajectories in the first quadrant approach the stable node.

(d) When d = 0.25, there are three equilibrium points: (0,4) is a stable node, (1.5578,0.1056) is a stable
node, and (0.8426,1.8936) is a saddle. The phase portrait is shown in Figure 2.41. The stable trajectories
of the saddle form a separatrix which divides the first quadrant into two halves. All trajectories in the right
half approach the stable node (1.5578,0.1056), while all trajectories in the left half approach the stable node

(0,4).
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Figure 2.42: Exercise 2.31{e).

(e) When d = 0.5, there is one equilibrium point at (0,4) which is a stable node. The phase portrait
is shown in Figure 2.42. All trajectories in the first quadrant approach the stable node.
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