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Chapter 1
Principles of Probability

1. Combining independent probabilities.

You have applied to three medical schools: University of California at San Francisco (UCSF),
Duluth School of Mines (DSM), and Harvard (H). You guess that the probabilities you’ll
be accepted are: p(UCSF) = 0.10, p(DSM) = 0.30, and p(H) = 0.50. Assume that the
acceptance events are independent.

(a) What is the probability that you get in somewhere (at least one acceptance)?

(b) What is the probability that you will be accepted by both Harvard and Duluth?

(a) The simplest way to solve this problem is to recall that when probabilities are
independent, and you want the probability of events A and B, you can multiply them.
When events are mutually exclusive and you want the probability of events A or B,
you can add the probabilities. Therefore we try to structure the problem into an and
and or problem. We want the probability of getting into H or DSM or UCSF. But
this doesn’t help, because these events are not mutually exclusive (mutually exclusive
means that if one happens, the other cannot happen). So we try again. The probability
of acceptance somewhere, P (a), is P (a) = 1− P (r), where P (r) is the probability that
you’re rejected everywhere. (You’re either accepted somewhere or you’re not.) But this
probability can be put in the above terms. P (r) = the probability that you’re rejected
at H and at DSM and at UCSF. These events are independent, so we have the answer.
The probability of rejection at H is p(rH) = 1− 0.5 = 0.5. Rejection at DSM is
p(rDSM) = 1− 0.3 = 0.7. Rejection at UCSF is p(rUCSF) = 1− 0.1 = 0.9. Therefore
P (r) = (0.5)(0.7)(0.9) = 0.315. Therefore the probability of at least one acceptance
= P (a) = 1− P (r) = 0.685.
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(b) The simple answer is that this is the intersection of two independent events:

p(aH)p(aDSM) = (0.50)(0.30)

= 0.15.

A more mechanical approach to either part (a) or this part is to write out all the
possible circumstances. Rejection and acceptance at H are mutually exclusive. Their
probabilities add to one. The same for the other two schools. Therefore all possible
circumstances are taken into account by adding the mutually exclusive events together,
and multiplying independent events:

[p(aH) + p(rH)][p(aDSM) + p(rDSM)][p(aUCSF) + p(rUCSF)] = 1,

or, equivalently,

= p(aH)p(aDSM)p(aUCSF) + p(aH)p(aDSM)p(rUCSF)

+p(aH)p(rDSM)p(aUCSF) + · · · ,

where the first term is the probability of acceptance at all three, the second term
represents acceptance at H and DSM but rejection at UCSF, the third term represents
acceptance at H and UCSF but rejection at DSM, etc. Each of these events is mutually
exclusive with respect to each other; therefore they are all added. Each individual term
represents independent events of, for example, aH and aDSM and aUCSF. Therefore it
is simple to read off the answer in this problem: we want aH and aDSM, but notice we
don’t care about UCSF. This probability is

p(aH)p(aDSM) = p(aH)p(aDSM)[p(aUCSF) + p(rUCSF)]

= (0.50)(0.30)

= 0.15.

Note that we could have solved part (a) the same way; it would have required adding
up all the appropriate possible mutually exclusive events. You can check that it gives
the same answer as above (but notice how much more tedious it is).
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2. Probabilities of sequences.

Assume that the four bases A, C, T, and G occur with equal likelihood in a DNA sequence
of nine monomers.

(a) What is the probability of finding the sequence AAATCGAGT through random
chance?

(b) What is the probability of finding the sequence AAAAAAAAA through random
chance?

(c) What is the probability of finding any sequence that has four A’s, two T’s, two G’s,
and one C, such as that in (a)?

(a) Each base occurs with probability 1/4. The probability of an A in position 1 is 1/4,
that of an A in position 2 is 1/4, that of an A in position 3 is 1/4, that of a T in
position 4 is 1/4, and so on. There are nine bases. The probability of this specific
sequence is (1/4)9 = 3.8× 10−6.

(b) Same answer as (a).

(c) Each specific sequence has the probability given above, but in this case there are many
possible sequences that satisfy the requirement that we have four A’s, two T’s, two
G’s, and one C. How many are there? We start as we have done before, by assuming
all nine objects are distinguishable. There are 9! arrangements of nine distinguishable
objects in a linear sequence. (The first one can be in any of nine places, the second in
any of the remaining eight places, and so on.) But we can’t distinguish the four A’s, so
we have overcounted by a factor of 4!, and must divide this out. We can’t distinguish
the two T’s, so we have overcounted by 2!, and must also divide this out. And so on.
So the probability of having this composition is

[
9!

4!2!2!1!

] (1
4

)9

= 0.014.
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3. The probability of a sequence (given a composition).

A scientist has constructed a secret peptide to carry a message. You know only the composi-
tion of the peptide, which is six amino acids long. It contains one serine S, one threonine T,
one cysteine C, one arginine R, and two glutamates E. What is the probability that the
sequence SECRET will occur by chance?

The S could be in any one of the six positions with equal likelihood. The probability that it
is in position 1 is 1/6. Given that S is in the first position, we have two E′s, which could
occur in any of the remaining five positions. The probability that one of them is in position 2
is 2/5. Given those two letters in position, the probability that the one C is in the next of
the four remaining positions is 1/4. The probability for the R is 1/3. For the remaining E, it
is 1/2, and for the last T, it is 1/1, so the probability is

(1/6)(2/5)(1/4)(1/3)(1/2) = 1/360 =
(

6!
1!2!1!1!

)−1

.

4. Combining independent probabilities.

You have a fair six-sided die. You want to roll it enough times to ensure that a 2 occurs at
least once. What number of rolls k is required to ensure that the probability is at least 2/3
that at least one 2 will appear?

q =
5
6

= probability that a 2 does not appear on that roll.

qk = probability that a 2 does not appear on k INDEPENDENT rolls.

P (k) = 1− qk = probability that at least one 2 appears on k rolls.

For

P (k) ≥ 2
3
, 1− qk ≥ 2

3
=⇒ qk ≤ 1

3
=⇒ k ln q ≤ ln

(1
3

)

=⇒ k ≥ ln(1/3)
ln(5/6)

= 6.03

Approximately six or more rolls will ensure with probability P ≥ 2/3 that a 2 will appear.
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5. Predicting compositions of independent events.

Suppose you roll a fair six-sided die three times.

(a) What is the probability of getting a 5 twice from all three rolls of the dice?

(b) What is the probability of getting a total of at least two 5’s from all three rolls of
the die?

The probability of getting x 5’s on n rolls of the dice is

(1
6

)x (5
6

)n−x n!
x!(n− x)! .

Note that this is a “2-outcome” problem (getting a 5 or not getting a 5). It is not a
“6-outcome” problem.

(a) So the probability of two 5’s on three dice rolls is

(1
6

)2 (5
6

)1 3!
2!1!

=
( 1

36

)(5
6

)
3

=
15
216

= 6.94× 10−2.

(b) The probability of getting at least two 5’s is the probability of getting two 5’s or three
5’s. Since these two situations are mutually exclusive, we seek

p(two 5’s) + p(three 5’s) =
(1

6

)2 (5
6

) 3!
2!1!

+
(1

6

)3 (5
6

)0 3!
3!0!

=
15
216

+
1

216

=
16
216

= 7.41× 10−2.
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6. Computing a mean and variance.

Consider the probability distribution p(x) = axn, 0 ≤ x ≤ 1, for a positive integer n.

(a) Derive an expression for the constant a, to normalize p(x).

(b) Compute the average 〈x〉 as a function of n.

(c) Compute σ2 = 〈x2〉 − 〈x〉2 as a function of n.

(a)
∫ 1

0
p(x) dx = 1 =⇒

∫ 1

0
axn dx =

axn+1

n+ 1

∣∣∣∣∣
1

0

=
a

n+ 1

= 1 =⇒ a = n+ 1.

(b) 〈x〉 =
∫ 1

0
xp(x) dx

=
∫ 1

0
(n+ 1)xn+1 dx =

[
(n+ 1)xn+2

n+ 2

]∣∣∣∣∣
1

0

=
n+ 1
n+ 2

.

(c) 〈x2〉 =
∫ 1

0
x2p(x) dx

= (n+ 1)
∫ 1

0
xn+2 dx

= (n+ 1)
(
xn+3

n+ 3

)∣∣∣∣∣
1

0

=
n+ 1
n+ 3

.

So

σ2 = 〈x2〉 − 〈x〉2

=
(
n+ 1
n+ 3

)
−
(
n+ 1
n+ 2

)2

.

6



7. Computing the average of a probability distribution.

Compute the average 〈i〉 for the probability distribution function shown in the figure below.

0 1 2 3 4

i

P (i )

0.0

0.2

0.4

0.3

0.1

A simple probability distribution.

〈i〉 =
4∑
i=0

ip(i)

= 0(0.0) + 1(0.1) + 2(0.2) + 3(0.3) + 4(0.4)

= 3

8. Predicting coincidence.

Your statistical mechanics class has 25 students. What is the probability that at least two
classmates have the same birthday?

If you first find the probability q that no two students have the same birthday, then the
quantity you want is

p(2 students have same birthday) = 1− q

The probability that a second student does not have the same birthday as the first is
(364/365). The probability that the third student has a birthday different than either of the
first two is (363/365), and so on. It is like a sequence problem in which each possible
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birthday is one card drawn out of a barrel. The probability that no two people have the same
birthday, out of m people, is

q =
(364

365

)(363
365

)(362
365

)
· · ·

(
365− (m− 1)

365

)
.

In factorial notation,

q =
N !

(N −m)!Nm
,

where N = 365. (Incidentally, this expression is identical to the expression for excluded
volume in the Flory–Huggins model of polymer solutions (see Chapter 31).) Using Stirling’s
approximation x! ≈ (x/e)x, we get

q =
(N/e)N(

N −m
e

)N−m
Nm

.

Collecting together terms in e and dividing the numerator and denominator by NN

gives

q =
e−m(

1− m

N

)N−m .

Substituting m = 25 students and N = 365 gives

q = 0.4163,

so

p = 1− q
= 0.5837.

There is a better than 50% chance two students will have the same birthday!
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9. The distribution of scores on dice.

Suppose that you have n dice, each a different color, all unbiased and six-sided.

(a) If you roll them all at once, how many distinguishable outcomes are there?

(b) Given two distinguishable dice, what is the most probable sum of their face values on
a given throw of the pair? (That is, which sum between 2 and 12 has the greatest
number of different ways of occurring?)

(c) What is the probability of the most probable sum?

(a)

6 on one die
6× 6 on two dice

...
6n on n dice.

(b) Number of ways a sum can occur:

Most probable sum

1
2

3
4
5
6

7

1 2 3 4 5 6 7 8 9 10 11 12

(1, 1)

(1, 2) × 2
(1, 6) × 2

(3, 4) × 2
(2, 3) × 2 (2, 5) × 2

(1, 3) × 2
(1, 4) × 2

(2, 2)

Sum of 2 dice

When dice show different numbers, there is a degeneracy of two. When each of the dice
has the same number, the degeneracy equals one.

(c) Probability of 7 = p(7) = number of ways of getting 7
total number of ways of all outcomes

p(7) =
6

1 + 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1
=

1
6
.
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10. The probabilities of identical sequences of amino acids.

You are comparing protein amino acid sequences for homology. You have a 20-letter alpha-
bet (20 different amino acids). Each sequence is a string n letters in length. You have one
test sequence and s different data base sequences. You may find any one of the 20 different
amino acids at any position in the sequence, independent of what you find at any other
position. Let p represent the probability that there will be a ‘match’ at a given position in
the two sequences.

(a) In terms of s, p, and n, how many of the s sequences will be perfect matches (identical
residues at every position)?

(b) How many of the s comparisons (of the test sequence against each database sequence)
will have exactly one mismatch at any position in the sequences?

(a) For comparing one sequence, each position being assumed independent, the probability
of a perfect match of all n residues is
pn = (number of matched seqs/number of total seqs) =⇒
number of matches in s sequences = spn.

(b) n− 1 positions match, so the probability is pn−1; one position doesn’t match, which has
the probability (1− p); and there are n different positions at which the mismatch could
occur; therefore the answer is

spn−1(1− p)n

Note that, in general, for k matches,

(1) P (k) = spk(1− p)n−k n!
k!(n− k)! .
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11. The combinatorics of disulfide bond formation.

A protein may contain several cysteines, which may pair together to form disulfide bonds
as shown in the figure below. If there is an even number n of cysteines, n/2 disulfide bonds
can form. How many different disulfide pairing arrangements are possible?

1

3

4

2

5

6

This disulfide bonding configuration with pairs 1–6, 2–5, and 3–4 is one of the many possible pairings.
Count all the possible pairing arrangements.

Number the individual sulfhydryl groups along the chain. The first sulfhydryl along the
sequence can bond to any of the other n− 1. This removes two sulfhydryls from
consideration. The third sulfhydryl can then bond to any of the remaining n− 3. Four
sulfhydryls are now removed from consideration. The fifth can now bond to any of the
remaining n− 5 sulfhydryls, etc., until all n/2 bonds are formed. Thus the total possible
number of arrangements of disulfide bonds is a product of n/2 terms:

D(n) = (n− 1)(n− 3)(n− 5) · · · 1.

Another approach gives an expression that is easier to calculate. Consider placing the
sulfhydryls in a sequence. The first place may be occupied by any of n sulfhydryls, the
second place by any of n− 1 sulfhydryls, the third by any of n− 2 sulfhydryls, etc. Thus, if
each sulfhydryl were distinguishable from every other, there would be n! arrangements.
However, each sulfhydryl has a mate from which it cannot be distinguished. We must divide
by a factor of 2 (per bond) to correct for the indistinguishability of the two ends of each
bond. Finally, since we cannot distinguish any of the n/2 bonds from any other, we must
also divide by (n/2)!. Hence the number of arrangements is

W (n) =
n!

2n/2(n/2)!
.

Although these two equations were derived in very different ways, they are numerically
identical for all n.
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12. Predicting combinations of independent events.

If you flip an unbiased green coin and an unbiased red coin five times each, what is the
probability of getting four red heads and two green tails?

The probability of four red heads in five coin flips is

(1
2

)5
(

5!
4!1!

)
=

5
32
.

The probability of two green tails is

(1
2

)5 5!
2!3!

=
10
32
.

Since the green coin flips are independent of the red coin flips, the probability we seek is
(5/32)(10/32) = (50/1024) = 4.88× 10−2.

13. A pair of aces.

What is the probability of drawing two aces in two random draws without replacement from
a full deck of cards?

A deck has 52 cards and four aces. The probability of getting an ace on the first draw is
4/52 = 1/13. Since you draw without replacement, the probability of getting one of the
remaining three aces on the second draw is 3/51, so the probability of two aces on two
draws is

( 4
52

)( 3
51

)
= 4.5× 10−3.

12



14. Average of a linear function.

What is the average value of x, given a distribution function q(x) = cx, where x ranges
from zero to one, and q(x) is normalized?

q(x) = cx

c

0 x 1

〈x〉 =
∫ 1

0
xq(x) dx =

∫ 1

0
cx2 dx

= c

(
x3

3

)∣∣∣∣∣
1

0

=
c

3
.

We can also find c:

1 =
∫ 1

0
q(x) dx =

∫ 1

0
cx dx

=
(
cx2

2

)∣∣∣∣∣
1

0

=
c

2
= 1.

So,

c = 2,

〈x〉 =
c

3
=

2
3
.
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15. The Maxwell–Boltzmann probability distribution function.

According to the kinetic theory of gases, the energies of molecules moving along the x
direction are given by εx = (1/2)mv2

x, where m is mass and vx is the velocity in the x
direction. The distribution of particles over velocities is given by the Boltzmann law, p(vx) =
e−mv

2
x/2kT . This is the Maxwell–Boltzmann distribution (velocities may range from −∞

to +∞).

(a) Write the probability distribution p(vx), so that the Maxwell–Boltzmann distribution
is correctly normalized.

(b) Compute the average energy 〈(1/2)mv2
x〉.

(c) What is the average velocity 〈vx〉?
(d) What is the average momentum 〈mvx〉?

(a) To write the probability distribution p(vx) dvx so that the Maxwell–Boltzmann
distribution is correctly normalized, we require

c
∫ ∞
−∞

e−mv
2
x/2kT dvx = 1

From integral tables, we see that

I =
∫ ∞
−∞

e−ax
2
dx =

(
π

a

)1/2
.

Aside To compute integrals of the form

I =
∫ ∞
−∞

e−ax
2
dx,

we use the following trick. It is easy to see that we can write

I2 =
∫ ∞
−∞

e−ax
2
dx
∫ ∞
−∞

e−ay
2
dy =

∫ ∞
−∞

∫ ∞
−∞

e−a(x
2+y2) dx dy.
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This is now an integral over the entire (x, y) plane. Converting to polar coordinates r
and θ and recognizing that r2 = x2 + y2, the integral becomes

I2 =
∫ ∞
0

dr r
∫ 2π

0
dθ e−ar

2
=
∫ ∞
0

dr re−ar
2
∫ 2π

0
dθ = 2π

∫ ∞
0

dr re−ar
2

Making the substitution u = −ar2, du = −2ar dr, we can finish the integral:

I2 = −π
a

∫ −∞
0

du eu = −π
a
eu
∣∣∣∣−∞
0

=
π

a
.

Hence

I =
(
π

a

)1/2
.

For our integral, a = m/2kT .

∫ ∞
−∞

e−mv
2
x/2kT dvx =

(
2πkT
m

)1/2

=⇒ p(vx) dvx =
(

m

2πkT

)1/2
e−mv

2
x/2kT dvx.

(b) To compute the average energy, 〈(1/2)mv2
x〉, we have

〈1
2
mv2

x

〉
=
∫ ∞
−∞

1
2
mv2

xp(vx) dvx =
m

2

(
2πkT
m

)1/2 ∫ ∞
−∞

v2
xe
−mv2x/2kT dvx

Again consulting our table of integrals, we find

∫ ∞
−∞

x2e−ax
2
dx =

π1/2

2a3/2

Aside: Integrals of the form
∫ ∞
−∞

x2e−ax
2
dx

can be computed by integration by parts. Recall that

∫ b

a
u dv = uv|ba −

∫ b

a
v du

Choosing the substitutions u = x and dv = xe−ax
2 , we have du = dx and v = − 1

2ae
−ax2 .

Our integral therefore becomes

∫ ∞
−∞

x2e−ax
2
dx =

(
− 1

2a
xe−ax

2
)∣∣∣∣
∞

−∞
+

1
2a

∫ ∞
−∞

e−ax
2

=
1
2a

(
π

a

)1/2
= 0 +

π1/2

2a3/2 .
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Note that we have used the result of the integral from part (a) above.

Therefore

〈1
2
mv2

x

〉
=

1
2
m

(
π1/2

2a3/2

)(
m

2πkT

)1/2
=

1
4
m

⎡
⎣
(

2kT
m

)3/2
⎤
⎦( m

π1/2kT

)1/2
=

1
2
kT.

(c) To find the average velocity 〈vx〉, we recall that for functions with odd symmetry
(f(x) = −f(−x)), the integral under the curve for negative x cancels with that under
the curve for positive x. Using the fact that p(x) = p(−x),

〈vx〉 =
∫ ∞
−∞

vxp(vx) dvx

=
∫ 0

−∞
vxp(vx) dvx +

∫ ∞
0

vxp(vx) dvx

=
∫ ∞
0

(−vx)p(−vx) dvx +
∫ ∞
0

vxp(vx) dvx

= −
∫ ∞
0

vxp(vx) dvx +
∫ ∞
0

vxp(vx) dvx.

= 0.

(d) The average momentum

〈mvx〉 = m〈vx〉 = 0,

from the result above.

16. Predicting the rate of mutation based on the Poisson probability distribution
function.

The evolutionary process of amino acid substitutions in proteins is sometimes described by
the Poisson probability distribution function. The probability ps(t) that exactly s substitu-
tions at a given amino acid position occur over an evolutionary time t is

ps(t) =
e−λt(λt)s

s!
,

where λ is the rate of amino acid substitutions per site per unit time. Fibrinopeptides evolve
rapidly: λF = 9.0 substitutions per site per 109 years. Lysozyme is intermediate: λL ≈ 1.0.
Histones evolve slowly: λH = 0.010 substitutions per site per 109 years.
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(a) What is the probability that a fibrinopeptide has no mutations at a given site in t = 1
billion years?

(b) What is the probability that lysozyme has three mutations per site in 100 million
years?

(c) We want to determine the expected number of mutations 〈s〉 that will occur in time
t. We will do this in two steps. First, using the fact that probabilities must sum to
one, write α =

∑∞
s=0 (λt)s/s! in a simpler form.

(d) Now write an expression for 〈s〉. Note that

∞∑
s=0

s(λt)s

s!
= (λt)

∞∑
s=1

(λt)s−1

(s− 1)!
= λtα.

(e) Using your answer to part (d), determine the ratio of the expected number of mutations
in a fibrinopeptide to the expected number of mutations in histone protein, 〈s〉fib/〈s〉his.

(a) The probability that a fibrinopeptide has no mutations at a given site in t = 1 billion
years is

P0(t) = e−λF t = exp[−(9.0 per 109 years)(109 years)]

= e−9 = 1.23× 10−4.

(b) For lysozyme,

λLt = (1.0 per 109 years)(108 years) = 0.1.

The probability that lysozyme has three mutations per site in 100 million years is then

P3(t) =
e−λLt(λLt)3

3!
=

(e−0.1)(0.1)3

6

= 1.51× 10−4.
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(c) Since the probabilities sum to 1,

∞∑
s=0

Ps(t) =
∞∑
s=0

e−λt(λt)s

s!
= e−λt

∞∑
s=0

(λt)s

s!
= 1.

Therefore

α =
∞∑
s=0

(λt)s

s!
= eλt.

(d) 〈s〉 =
∞∑
s=0

sPs(t) =
∞∑
s=0

se−λt(λt)s

s!

= e−λt(λt)
∞∑
s=1

(λt)s−1

(s− 1)!

= e−λt(λt)
∞∑
h=0

(λt)h

h!
= (λtα)e−λt,

so

〈s〉 = λt.

(e)
〈s〉fib

〈s〉his
=
λF t

λHt
=
λF
λH

=
9

0.01
= 900.
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17. Probability in court.

In forensic science, DNA fragments found at the scene of a crime can be compared with
DNA fragments from a suspected criminal to determine that the probability that a match
occurs by chance. Suppose that DNA fragment A is found in 1% of the population, fragment
B is found in 4% of the population, and fragment C is found in 2.5% of the population.

(a) If the three fragments contain independent information, what is the probability that
a suspect’s DNA will match all three of these fragment characteristics by chance?

(b) Some people believe such a fragment analysis is flawed because different DNA frag-
ments do not represent independent properties. As before, suppose that fragment A
occurs in 1% of the population. But now suppose that the conditional probability of
B, given that A is p(B|A) = 0.40 rather than 0.040, and p(C|A) = 0.25 rather than
0.025. There is no additional information about any relationship between B and C.
What is the probability of a match now?

(a) Since the fragments are independent,

p = p(A) p(B) p(C)
= (0.01)(0.04)(0.025) = 1× 10−5.

(b) p = p(A) p(B/A) p(C/A)

= (0.01)(0.40)(0.25) = 1× 10−3.

18. Flat distribution.

Given a flat distribution, from x = −a to x = a, with probability distribution p(x) = 1/(2a):

(a) Compute 〈x〉.
(b) Compute 〈x2〉.
(c) Compute 〈x3〉.
(d) Compute 〈x4〉.
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(a) 〈x〉 =
∫ a

−a
xp(x) dx =

∫ a

−a
x

2a
dx =

∫ a

0

x

2a
dx−

∫ a

0

x

2a
dx = 0.

(b) 〈x2〉 =
∫ a

−a
x2p(x) dx =

( 1
2a

) (
x3

3

)∣∣∣∣∣
a

−a
=

1
2a

[
a3

3
−
(
−a

3

3

)]
=
a2

3
.

(c) By symmetry (as in (a)), 〈x3〉 = 0. In fact, 〈xn〉 = 0 for all odd integers n.

(d) 〈x4〉 =
∫ a

−a
x4p(x) dx =

( 1
2a

)
x5

5

∣∣∣∣∣
a

−a
=
a4

5
.

19. Family probabilities.

Given that there are three children in your family, what is the probability that:

(a) two are boys and one is a girl?

(b) all three are girls?

The probability is about 1/2 for having either a boy or a girl. The binomial distribution
shows that the probabilities are:

3 girls :
(1

2

)3 3!
3!0!

=
1
8
,

2 girls, 1 boy :
(1

2

)3 3!
2!1!

=
3
8
,

1 girl, 2 boys :
(1

2

)3 3!
1!2!

=
3
8
,

3 boys :
(1

2

)3 3!
0!3!

=
1
8
.
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20. Evolutionary fitness.

Suppose that the probability of having the dominant allele (D) in a gene is p and the
probability of the recessive allele (R) is q = 1 − p. You have two alleles, one from each
parent.

(a) Write the probabilites of all the possibilities: DD, DR, and RR.

(b) If the fitness of DD is fDD, the fitness of DR is fDR, and the fitness of RR is fRR,
write the average fitness in terms of p.

(a)

D R

D p2 pq

R qp q2

DD : p2

DR : 2pq

RR : q2

(b) The average fitness is

〈fitness〉 =
∑
i

(fitness)iprobabilityi

= fDDp
2 + 2fDRp(1− p) + fRR(1− p)2.

21. Ion-channel events.

A biological membrane contains N ion-channel proteins. The fraction of time that any one
protein is open to allow ions to flow through is q. Express the probability P (m,N) that m
of the channels will be open at any given time.

Channels are either open, with probability q, or closed, with probability (1− q), so the
expression we want is the binomial distribution,

P (m,N) = qm(1− q)N−m N !
m!(N −m)!

.
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22. Joint probabilities: balls in a barrel.

For Example 1.10, two green balls and one red ball drawn from a barrel without replacement:

(a) Compute the probability p(RG) of drawing one red and one green ball in either order.

(b) Compute the probability p(GG) of drawing two green balls.

(a) We have

p(G1) = 2/3,
p(R1) = 1/3,

p(G2 | G1) = 1/2,
p(G2 | R1) = 1,
p(R2 | G1) = 1/2,

so

p(RG) = p(R1)p(G2 | R1) + p(G1)p(R2 | G1)

= (1/3)(1) + (2/3)(1/2)

= 2/3.

(b) p(GG) = p(G1)p(G2 | G1)

= (2/3)(1/2) = 1/3.

Note that since p(RR) = 0, the quantities in (a) and (b) sum to one.
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23. Sports and weather.

The San Francisco football team plays better in fair weather. They have a 70% chance of
winning in good weather, but only a 20% chance of winning in bad weather.

(a) If they play in the Super Bowl in Wisconsin and the weatherman predicts a 60%
chance of snow that day, what is the probability that San Francisco will win?

(b) Given that San Francisco lost, what is the probability that the weather was bad?

(a) These chances of winning given in the problem are conditional probabilities (i.e., the
probability of winning) given that the weather is good or bad. The approach here is to
elucidate the four mutually exclusive and collectively exhaustive outcomes, winning and
good weather P (W,G), winning and bad weather P (W,B), losing and good weather
P (L,G), and losing and bad weather P (L,B). These joint probabilities can be related
to the conditional probabilities P (W |G), etc., and the weather probabilities P (G) and
P (B) by the following equations:

P (W,G) = P (W |G)P (G) = (0.7)(0.4) = 0.28,

P (W,B) = P (W |B)P (B) = (0.2)(0.6) = 0.12,

P (L,G) = P (L|G)P (G) = (0.3)(0.4) = 0.12,

P (L,B) = P (L|B)P (B) = (0.8)(0.6) = 0.48.

(Note that P (L|G) was computed using the fact that P (W |G) + P (L|G) = 1.)

(b) P (B|L) =
P (L,B)
P (L)

P (L) = P (L|G)P (G) + P (L|B)P (B)

= (0.3)(0.4) + (0.8)(0.6)

= 0.6

Therefore, P (B|L) = 0.48/0.6 = 0.8—there is an 80% chance there was bad weather, given
that they lost.
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24. The Monty Hall Dilemma.

You are a contestant on a game show. There are three closed doors: one hides a car and two
hide goats. You point to one door, call it C. The gameshow host, knowing what’s behind
each door, now opens either door A or B, to show you a goat; say it’s door A. To win a
car, you now get to make your final choice: should you stick with your original choice C,
or should you now switch and choose door B? (New York Times, July 21, 1991; Scientific
American, August 1998.)

A good way to illustrate how people sometimes try to tackle this problem is to consider a
similar one: Suppose three cards are lying face down on a table, only one of which is an ace.
The first card, A, is turned over, and is not an ace, so

p(B = ace) =
1
3

1− 1
3

=
1
2

p(C = ace) =
1
3

1− 1
3

=
1
2
.

So both remaining face-down cards are equally likely to be an ace. Using this type of
reasoning, many people will say that switching isn’t any more likely to win than staying with
the door you initially chose. But these problems are not equivalent – in the Monty Hall case,
the host has knowledge of both which door you initially picked and which door contains the
car.

A simple way to come to arrive at the correct solution is to break it down into two
separate questions:
1. What is the probability of winning if you don’t switch doors?
If you don’t switch doors, it means that you make no use of the information given by the host
revealing a goat. The only way you can win is if the door you initially chose has the car
behind it, and hence the probability of winning is 1/3.
2. What is the probability of winning if you do switch?
If you do switch doors, the only way you can lose is if the door you initially picked had the
car behind it, so you have a 1/3 probability of losing and your probability of winning is
therefore 2/3. So you should switch doors.
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25. Probabilities of picking cards and rolling dice.

(a) What is the probability of drawing either a queen or a heart in a normal deck of 52
cards?

(b) What is the probability P of getting three 2’s and two 4’s on 5 independent rolls of a
die?

(a) P (Q of hearts) = 1/52, P (Q not of hearts) = 3/52, P (heart and not a Q) = 12/52, so

P = (1/52) + (3/52) + (12/52) = 16/52.

(b) P (2) = P (4) = 1/6, P (2)3P (4)2 = (1/6)5 = 1/7776 = 1.29× 10−4, so

P =
(

5
2

)
1.29× 10−4 = 1.29× 10−3.

26. Probability and translational start codons.

In prokaryotes, translation of mRNA messages into proteins is most often initiated at start
codons on the mRNA having the sequence AUG. Assume that the mRNA is single-stranded
and consists of a sequence of bases, each described by a single letter. The alphabet of letters
for mRNA consists of A, C, U, or G.

Consider the set of all random pieces of bacterial mRNA of length six bases.

(a) What is the probability of having either no A’s or no U’s in the mRNA sequence of
six base pairs long?

(b) What is the probability of a random piece of mRNA having exactly one A, one U,
and one G?

(c) What is the probability of a random piece of mRNA of length six base pairs having
an A directly followed by a U directly followed by a G; in other words, having an
AUG in the sequence?

(d) What is the total number of random pieces of mRNA of length six base pairs that
have exactly one A, exactly one U, and exactly one G, with A appearing first, then
the U, then the G? (e.g., AXXUXG).
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(a) P (no A’s oR no U’s) = P (no A) + P (no U) − P (no A aND no U)

=
(3

4

)6

+
(3

4

)6

−
(1

2

)6

= 0.34

(b) Use the multinomial probability distribution (1.33):

W =
6!

1!1!1!3!
, P =

(1
4

)6 6!
1!1!1!3!

= 0.0293.

(c) Let us find W (AUG):
6 positions total:
3 positions are fixed: Wf = 13,
3 positions are variable: Wv = 43,
4 positions AUG can take in the sequence:Wpos = 3

A U G
A U G
A U G

Note: We do not count this next AUG position because it has already been included in
the first A U G when we count the multiplicity of the variable positions:

A U G

Because Wtotal is the product of independent sources of multiplicity,

W (AUG) = WfWvWpos = 13 · 43 · 3,

P (AUG) =
Wf

Wtotal
=

3 · 43

46 =
3
43 =

3
64
≈ 0.0469.

(d) We will calculate W for one A, one U, and one G for any ordering of the A, U, G
with respect to each other. Then we will divide this result by the number of ways of
ordering A, U, G with respect to each other, because we wish only to count the cases
where A appears before U appears before G. We have

W (1A, 1U, 1G) =
6!

1!1!1!3!
.

The number of ways of ordering A, U, G with respect to each other is 3!, and we have

W (1A, 1U, 1G) =
6!/(1!1!1!3!)

3!
=

6 · 5 · 4
3 · 2 · 1 = 20.
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27. DNA synthesis.

Suppose that upon synthesizing a molecule of DNA, you introduce a wrong base pair, on
average, every 1000 base pairs. Suppose you synthesize a strand of DNA that is 1000 bases
long.

(a) Calculate and draw a bar graph indicating the yield (probability) of each product
DNA, containing 0, 1, 2, and 3 mutations (wrong base pairs).

(b) Calculate how many combinations of DNA sequences of 1000 bases contain exactly 2
mutant bases.

(c) What is the probability of having specifically the 500th base pair and the 888th base
pair mutated in the pool of DNA that has only two mutations?

(d) What is the probability of having two mutations side-by-side in the pool of DNA that
has only two mutations?

(a) Let letter R stand for a right base and M stand for a mutant one.

p(1000R, 1000) = (0.999)1000(0.001)0 1000!
1000!

≈ 0.368,

p(999R, 1M, 1000) = (0.999)999(0.001)1 1000!
999!1!

≈ 0.368,

p(998R, 2M, 1000) = (0.999)998(0.001)2 1000!
998!2!

≈ 0.18,

p(997R, 2M, 1000) = (0.999)997(0.001)3 1000!
997!3!

≈ 0.06.

0.37

0.18

R
el

at
iv

e 
Y

ie
ld

0.06

0 1 2
Number of Mutant Bases

3

(b) W =
1000!
998!2!

(c) The probability of having a DNA strand with only 2 mutated bases is 0.18. The
probability of having mutations at places 500 and 888 of the strand is

p(...M(500)......M(888)...) = 0.18× 998!2!
1000!

= 0.18× 2× 10−6 = 3.6× 10−7.

(d) p(...MM...) = 0.18× 998!2!
1000!

× 999 = 0.18× 1
500

= 3.6× 10−4
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28. Presidential election.

Two candidates are running for president. Candidate A has already received 80 electoral
votes and only needs 35 more to win. Candidate B already has 50 votes, and needs 65 more
to win.

Five states remain to be counted. Winning a state gives a candidate 20 votes; losing
gives the candidate zero votes. Assume both candidates otherwise have equal chances to
win in those 5 states:

(a) Write an expression for WA, total, the number of ways A can succeed at winning 40
more electoral votes.

(b) Write the corresponding expression for WB, total.

(c) What is the probability candidate A beats candidate B?

(a) For candidate A, this is like flipping a coin 5 times. Each head is like winning 20 points;
each tail is zero. Candidate A can win by getting 2 more more states (‘heads’), so

WA,total =
5!

2!3!
+

5!
3!2!

+
5!

4!1!
+

5!
5!0!

= 10 + 10 + 5 + 1 = 26.

(b) Candidate B can win by getting 3 or more states, so

WB, total =
5!

4!1!
+

5!
5!0!

= 5 + 1 = 6.

(c) P (Awins) =
WA,total

WA,total +WB,total
=

26
26 + 6

= 0.81.
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Chapter 2
Extremum Principles Predict
Equilibria

1. A lattice gas.

How many arrangements are there of 15 indistinguishable lattice gas particles distributed
on:

(a) V = 20 sites?

(b) V = 16 sites?

(c) V = 15 sites?

(a) W (N = 15, V = 20) =
20!

15!5!
=

20 · 19 · 18 · 17 · 16
5 · 4 · 3 · 2 = 15, 504.

(b) W (N = 15, V = 16) =
16!

15!1!
= 16.

(c) W (N = 15, V = 15) =
15!

15!0!
= 1.
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2. Maximum of binomial distribution.

Find the value n = n∗ that causes the function

W =
N !

n!(N − n)!
pn(1− p)N−n

to be at a maximum, for constants p andN . Use Stirling’s approximation, x! � (x/e)x. Note
that it is easier to find the value of n that maximizes lnW than the value that maximizes
W . The value of n∗ will be the same.

W is maximal where lnW is maximal, and

lnW = n ln p+ (N − n) ln(1− p) + lnN !− lnn!− ln(N − n)!.

Now using Stirling’s approximation, lnN ! ≈ N lnN −N , we obtain

lnW ≈ n ln p+ (N − n) ln(1− p) + (N lnN −N)− (n lnn− n)

−[(N − n) ln(N − n)− (N − n)]

= n ln p+ (N − n) ln(1− p) +N lnN − n lnn− (N − n) ln(N − n)

This function is maximal where

d lnW
dn

= 0.

We have

d lnW
dn

= ln p− ln(1− p)−
(
n · 1

n
+ lnn

)

−
[
(N − n) · 1

(N − n)
(−1) + ln(N − n) · (−1)

]

= ln
(

p

1− p
)
− lnn+ ln(N − n)− 1 + 1
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We add lnN − lnN to the right-hand side and rearrange terms to allow us to write ln(n/N)
and ln[(N − n)/N ]:

d lnW
dn

= ln
(

p

1− p
)
− ln

(
n

N

)
+ ln

(
N − n
N

)
= 0,

ln
(

n∗

N − n∗
)

= ln
(

p

1− p
)
,

n∗

N − n∗ =
p

1− p,

n∗
(

1 +
p

1− p
)

=
Np

1− p,

n∗

N
=

p/(1− p)
1/1− p = p.

3. Finding extrema.

V (x) =
1
3
x3 +

5
2
x2 − 24x

(a) Where is the maximum?

(b) Where is the minimum?

To find the extrema, determine the values x = x∗ that cause the derivative to equal zero:

dV

dx

∣∣∣∣∣
x∗

= (x2 + 5x− 24)
∣∣∣
x∗ = (x∗ − 3)(x∗ + 8) = 0

=⇒ x∗ = 3,−8.

To determine whether the extrema are maxima or minima, evaluate the second derivative at
the x∗ points:

d2V

dx2 = 2x+ 5,

31



d2V

dx2

∣∣∣∣∣
x∗=3

= 2(3) + 5 = 11.

Since this value is positive, x∗ = 3 is a minimum.

d2V

dx2

∣∣∣∣∣
x∗=−8

= 2(−8) + 5 = −9.

This value is negative, so x∗ = −8 is a maximum.

4. The binomial distribution narrows as N increases.

Flip a coin 4N times. The most probable number of heads is 2N , and its probability is
p(2N). If the probability of observing N heads is p(N), show that the ratio p(N)/p(2N)
diminishes as N increases.

p(N)
p(2N)

=

(
(4N)!

(N !)(3N)!

)
(

(4N)!
(2N)!(2N)!

)

=
[(2N)!]2

N !(3N)!
≈

[
(2N/e)2N

]2
(N/e)N (3N/e)3N

=
24NN4N

33NN4N

=
(

24

33

)N
=
(16

27

)N
.

Note that as N →∞,

lim
N→∞

p(N)
p(2N)

= lim
N→∞

(16
27

)N
= 0.
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5. De-mixing is improbable.

Using the diffusion model of Example 2.3, with 2V lattice sites on each side of a permeable
wall and a total of 2V white particles and 2V black particles, show that perfect de-mixing (all
white on one side, all black on the other) becomes increasingly improbable as V increases.

The ratio r of the perfectly demixed to perfectly mixed configurations is

r =
1(

2V !
V !V !

)(
2V !
V !V !

) =
(
V !V !
(2V )!

)2

≈
(

(V/e)2V

(2V /e)2V

)2

=
( 1

24

)V
=
( 1

16

)V
.

Note that as V →∞,

lim
r→∞ r = lim

N→∞

( 1
16

)N
= 0.

6. Stable states.

For the energy function V (θ) = cos θ for 0 ≤ θ ≤ 2π, find the values θ = θs that identify
stable equilibria, and the values θ = θu that identify unstable equilibria.

dV (θ)
dθ

= − sin θ.

This derivative is zero when sin θ is zero. This occurs at θ = nπ, where n is an integer. To
determine which of these points are maxima and which are minima, we need to compute the
second derivative:

d2V

dθ2 = − cos θ.

This is negative for all even-numbered multiples of π and positive for all odd-numbered
multiples. Therefore, the unstable equilibria are given by θu = 2kπ and the stable equilibria
by θs = π + 2kπ, where k is an integer.
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7. One-dimensional lattice.

You have a one-dimensional lattice that contains NA particles of type A and NB particles
of type B. They completely fill the lattice, so the number of sites is NA + NB. Write an
expression for the multiplicity W (NA, NB), the number of distinguishable arrangements of
the particles on the lattice.

W (NA, NB) =
(
NA +NB

NA

)
=
(
NA +NB

NB

)
=

(NA +NB)!
NA!NB!

.
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