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CHAPTER 2 

 

 

2.1 Consider a two-dimensional body in a flow, as sketched in Figure A.  A control volume is 

drawn around this body, as given in the dashed lines in Figure A.  The control volume is 

bounded by: 

1. The upper and lower streamlines far above and below the body (ab and hi, 

respectively.) 

2. Lines perpendicular to the flow velocity far ahead of and behind the body (ai and 

bh, respectively).   

3. A cut that surrounds and wraps the surface of the body (cdefg). 

The entire control volume is abcdefhia.  The width of the control volume in the z direction 

(perpendicular to the page) is unity.  Stations 1 and 2 are inflow and outflow stations, 

respectively.   

 Assume that the contour abhi is far enough from the body such that the pressure is 

everywhere the same on abhi and equal to the freestream pressure p = p.  Also, assume that the 

inflow velocity u1 is uniform across ai (as it would be in a freestream, or a test section of a wind 

tunnel.)  The outflow velocity u2 is not uniform across bh, because the presence of the body has 

created a wake at the outflow station.  However, assume that both u1 and u2 are in the x direction; 

hence, u1 = constant and u2 = f(y).   

 Consider the surface forces on the control volume shown in Figure A.  They stem from 

two contributions: 

1. The pressure distribution over the surface, abhi, 


abhi

p dS 
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 2. The surface force on def created by the presence of the body  

 

 

 

 

 

 

 

 

Figure A 

The surface shear stress on ab and hi has been neglected.  Also, note that in Figure A the cuts cd 

and fg are taken adjacent to each other; hence any shear stress or pressure distribution on one is 

equal and opposite to that on the other; i.e., the surface forces on cd and fg cancel each other.  

Also, note that the surface on def is the equal and opposite reaction to the shear stress and 

pressure distribution created by the flow over the surface of the body.  To see this more clearly, 

examine Figure B.  On the left is shown the flow over the body.  The moving fluid exerts 

pressure and shear stress distributions over the body surface which create a resultant 

aerodynamic force per unit span R on the body.  In turn, by Newton’s third law, the body exerts 

equal and opposite pressure and shear stress distributions on the flow, i.e., on the part of the 

control surface bounded by def.  Hence, the body exerts a force –R on the control surface, as 

shown on the right of Figure B.  With the above in mind, the total surface force on the entire 

control volume is 

 Surface force = 
abhi

p dS – R      (1) 
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Moreover, this is the total force on the control volume shown in Figure A because the volumetric 

body force is negligible. 

 Consider the integral form of the momentum equation as given by Equation (2.11) in the 

text.  The right-hand side of this equation is physically the force on the fluid moving through the 

control volume.  For the control volume in Figure A, this force is simply the expression given by 

Equation (1).  Hence, using Equation (2.11), with the right-hand side given by Equation (1), we 

have 

 


t
 



  V
dV

V
 d + 

S

 (V . dS) V = 
abhi

p DS - R   (2) 

 

 

 

 

 

 

 

 

 

Figure B 

Assuming steady flow, Equation (2) becomes 

 R = - 
S

 (V . dS) V 
abhi

p dS      (3) 
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Equation (3) is a vector equation.  Consider again the control volume in Figure A.  Take the x 

component of Equation (3), nothing that the inflow and outflow velocities u1 and u2 are in the x 

direction and the x component of R is the aerodynamic drag per unit span D: 

 D = - 
S

 (V . dS) u 
abhi

(p dS)x      (4) 

In Equation (4), the last term is the component of the pressure force in the x direction.  [The 

expression (p dS)x is the x component of the pressure force exerted on the elemental area dS of 

the control surface.]  Recall that the boundaries of the control volume abhi are chosen far enough 

from the body such that p is constant along these boundaries.  For a constant pressure.   

 
abhi

 (p dS)x = 0        (5) 

because, looking along the x direction in Figure A, the pressure force on abhi pushing toward the 

right exactly balances the pressure force pushing toward the left.  This is true no matter what the 

shape of abhi is, as long as p is constant along the surface.  Therefore, substituting Equation (5) 

into (4), we obtain 

 D = -
S

 (V . dS) u        (6) 

Evaluating the surface integral in Equation (6), we note from Figure A that: 

1. The sections ab, hi and def are streamlines of the flow.  Since by definition V is 

parallel to the streamlines and dS is perpendicular to the control surface, along these 

sections V and dS are perpendicular vectors, and hence V . dS = 0.  As a result, the 

contributions of ab, hi and def to the integral in Equation (6) are zero. 
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2. The cuts cd and fg are adjacent to each other.  The mass flux out of one is identically 

the mass flux into the other.  Hence, the contributions of cd and fg to the integral in 

Equation (6) cancel each other. 

As a result, the only contributions to the integral in Equation (6) come from sections ai and bh.  

These sections are oriented in the y direction.  Also, the control volume has unit depth in the z 

direction (perpendicular to the page).  Hence, for these sections, dS = dy(1).  The integral in 

Equation (6) becomes 

 
S

 (V . dS) u = - 
i

a

 iu
2

1dy + 
h

b

 2u
2

2dy     (7) 

Note that the minus in front of the first term on the right-hand side of Equation (7) is due to V 

and dS being in opposite directions along ai (station 1 is an inflow boundary); in contrast, V and 

dS are in the same direction over hb (station 2 is an outflow boundary), and hence the second 

term has a positive sign. 

 Before going further with Equation (7), consider the integral form of the continuity 

equation for steady flow.  Applied to the control volume in Figure A, this becomes 

 - 
i

a

 1u1 dy + 
h

b

 2u2 dy = 0        

or, 

 
i

a

 1u1 dy = 
h

b

 2u2 dy        (8) 

 

Multiplying Equation (8) by u1, which is a constant, we obtain 

 
i

a

 1udy = 
h

b

 2u2u1 dy       (9) 

Substituting Equation (9) into Equation (7), we have 

 
S

 (V . dS) u = - 
h

b

 u2u1 dy + 
h

b

 2u
2

2dy 

or 
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S

 (V . dS) u = - 
h

b

 u2 (u1 – u2) dy     (10) 

Substituting Equation (10) into Equation (6) yields 

 D = 
h

b

 2u2 (u1 – u2) dy       (11) 

 

 Equation (11) is the desired result of this section; it expresses the drag of a body in terms 

of the known freestream velocity u1 and the flow-field properties 2 and u2, across a vertical 

station downstream of the body.  These downstream properties can be measured in a wind 

tunnel, and the drag per unit span of the body D can be obtained by evaluating the integral in 

Equation (11) numerically, using the measured data for 2 and u2 as a function of y.   

 Examine Equation (11) more closely.  The quantity u1 – u2 is the velocity decrement at a 

given y location.  That is, because of the drag on the body, there is a wake that trails downstream 

of the body.  In this wake, there is a loss in flow velocity u1 – u2.  The quantity 2u2 is simply the 

mass flux; when multiplied by u1 – u2, it gives the decrement in momentum.  Therefore, the 

integral in Equation (11) is physically the decrement in momentum flow that exists across the 

wake, and from Equation (11), this wake momentum decrement is equal to the drag on the body.   

 For incompressible flow,  = constant and is known.  For this case, Equation (11) 

becomes 

 D =  
h

b

 u2 (u1 – u2) dy       (12) 

 

Equation (12) is the answer to the questions posed at the beginning of this section.  It shows how 

a measurement of the velocity distribution across the wake of a body can yield the drag.  These 

velocity distributions are conventionally measured with a Pitot rake.   
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2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denote the pressure distributions on the upper and lower walls by pu(x) and p  (x) respectively.  

The walls are close enough to the model such that pu and p   are not necessarily equal to p.  

Assume that faces ai and bh are far enough upstream and downstream of the model such that 

 p = p   and  v = 0  and ai and bh.   

 

Take the y-component of Eq. (2.11) in the text: 

 

 L = - 
S

V


( . dS


)  v - 
abhi

pdS y


( )  

The first integral = 0 over all surfaces, either because V


. ds


 = 0 or because v = 0.  Hence 

 

 L = - 
abhi

pdS y


( )  = - [
a

b

 pu dx - 
i

h

 p   dx] 

 

                                                                Minus sign because y-component is in downward 

                                                                direction. 

 

Note:  In the above, the integrals over ia and bh cancel because p = p on both faces.   Hence 

 

 L = 
i

h

 p   dx - 
a

b

 pu dx 
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