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Chapter 2 
 
2-1 Explain, in your own words, the distinction between average path loss, shadow fading, and 

multipath fading. How are they related to one another? 
 
Average path loss is the decrease of the far-field average power of the transmitted EM wave 
over distance at a rate of 1/(distance)n, where 2n ≥ , 2n =  being the free-space case, 4n =  
if we assume a two-ray propagation model, with the received signal composed of a direct 
line-of-sight component and an indirect component by perfect reflection from a flat ground 
surface. 
 
Shadow fading is the long-term variations in radio signal power about the average power due 
to terrain obstructions such as hills or buildings. This type of fading is slowly varying, being 
manifested over relatively long distances (many wavelengths), from tens to hundreds of 
meters. A good approximation to the effect of shadow fading is to assume that the power 
measured in decibels (dB) follows a Gaussian or Normal distribution centered about its 
average value, with some standard deviation ranging, typically, from 6 – 10 dB. The power 
probability distribution is thus commonly called a log-normal distribution. 
 
Multipath fading is the small-scale variation of the received signal attributed to the 
destructive/constructive phase interference of many received signal paths. The signal power 
fluctuates substantially on the order of wavelengths. For macrocellular systems, the 
amplitude of the received signal due to multipath fading is often modeled as varying 
randomly according to a Rayleigh distribution. For microcellular systems, with the existence 
of a direct line-of-sight signal, the small-scale variation is better approximated by a Ricean 
distribution. 
 
Putting these three phenomena together, the statistically-varying received signal power PR 
may be modeled by the following equation: 

2 1010 ( )
x

R T T RP g d P G Gα=  
 
where PT is the transmitted signal power, GT is the transmitter gain, GR is the receiver gain 
and g(d) is the 1/(distance)n relation which models the effect of average path loss. The 
average received power is given by ( )R T T RP g d P G G= . The terms /1010x  and 2α  represent 
the shadow fading and multipath fading effects respectively. The shadow-fading random 
variable x, measured in dB, is Gaussian-distributed with a zero mean. The multipath-fading 
random variable α is either Rayleigh-distributed for macrocellular systems, or 
Ricean-distributed for microcellular systems. 
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2-2 Using Table 2-1, plot , ,/R db T dbP P  for Orlando as a function of distance d, in meters, with 0 < 
d < 200m. Assume transmitter and receiver antenna gains are both 1. 
 
From (2-5), 

( )R T T RP g d P G G=  
Assume 1T RG G= = , 

/ ( )R TP P g d=  

10 1010 log ( / ) 10 log ( )R TP P g d=  
1 2

, , 1010 log [ (1 ) ]n n
R db T db

b

dP P d
d

− −− = +  

 
 

Plot of , ,R db T dbP P−  with respect to Distance for Orlando 
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2-3 Determine the shadow-fading parameter σ  for each of the four measured curves of Figs. 
2-4 and 2-5, and compare. Hint: First calculate the average value of each curve and then the 
root mean-squared value about these averages.  
 
For each curve, we choose 30 data points to compute the shadow-fading parameter σ . 
 
Case (i) 836 MHz; winter values: 

-40 -42 -39 -35 -29 -22 -25 -27 -24 -30 -30 -32 -25 -20 -15 
-20 -25 -20 -9 -4 0 -10 0 -5 -7 -11 -17 -11 -6 -12 

Average received signal level = -19.7 dB; σ  = 12 dB 
 

Case (ii) 836 MHz; summer values: 

-44 -45 -46 -42 -33 -28 -28 -36 -26 -35 -39 -40 -30 -30 -24 
-25 -28 -28 -12 -14 -4 -10 -8 -3 -8 -20 -21 -17 -13 -20 

Average received signal level = -25.2 dB; σ  = 12.6 dB 
 

Case (iii) 11.2 GHz; winter values: 

-46 -45 -37 -30 -30 -29 -39 -28 -42 -42 -35 -30 -28 -26 -28 
-34 -28 -15 -23 -2 -20 -6 -6 -4 -10 -16 -17 -15 -16 -20 

Average received signal level = -25.9 dB; σ  = 12.4 dB 
 

Case (iv) 11.2 GHz; summer values: 

-55 -57 -57 -54 -48 -42 -48 -50 -44 -57 -57 -55 -54 -44 -40 
-46 -50 -45 -32 -16 -15 -15 -15 -17 -21 -30 -34 -24 -29 -38 

Average received signal level = -39.6 dB; σ  = 14.8 dB 
 
 

2-4 The average power received at mobiles 100 m from a base station is 1 mW. Log-normal, 
shadow, fading is experienced at that distance.  

a. What is the probability that the received power at a mobile at that distance from the base 
station will exceed 1 mW? Be less than 1 mW? 
 
0.5 
 

b. The log-normal standard deviation σ is 6 dB. An acceptable received signal is 10 mW or 

higher. What is the probability that a mobile will have an acceptable signal? Repeat for σ 
= 10 dB. Repeat both cases for an acceptable received signal of 6 mW. Note: Solutions 
here require the integration of the Gaussian function. Most mathematical software 
packages contain the means to do this. Most books on probability and statistics have 
tables of the error function used for just this purpose. The error function is defined in 
chapter 3 of this text. See (3-12). 
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Case (i) p0 ≥ 10 mW; σ = 6 dB 

10
0

10 log 101 1( ) ( ) 0.0478
2 2 2 6

P p p erf≥ = − =
×

 

 
Case (ii) p0 ≥ 10 mW; σ = 10 dB 

10
0

10 log 101 1( ) ( ) 0.1587
2 2 2 10

P p p erf≥ = − =
×

 

 
Case (iii) p0 ≥ 6 mW; σ = 6 dB 

10
0

10 log 61 1( ) ( ) 0.0973
2 2 2 6

P p p erf≥ = − =
×

 

 
Case (iv) p0 ≥ 6 mW; σ = 10 dB 

10
0

10 log 61 1( ) ( ) 0.2182
2 2 2 10

P p p erf≥ = − =
×

 

 
 

2-5 a. Fill in the details of the derivation of the two-ray average received power result given by 
(2-13a). 
Step 1: Derivation of 4 /t rh h dφ π λ∆ ≈  
 
With reference to the first diagram on the 
right, we can prove by Pythagoras’ 
Theorem that 

 2 2
1 2 ( )t rd d r h h+ = + +  (1) 

 
With reference to the second diagram on 
the right, we have 

 2 2 2( )t rr d h h= − −  (2) 
 
Substitute (2) into (1), we have 

2 2 2
1 2 ( ) ( )t r t rd d d h h h h+ = − − + +  

 2
1 2 4 t rd d d h h+ = +  (3) 

 
 
Assume 2 4 t rd h h>> , 

 2
1 2( ) 4 t rd d d d d h h d∆ = + − = + −  

r 

hr

d1 ht

hr

d2

d2 

r 

hrhr

ht - hr
d
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 2 24 (2 / )t r t rd h h h h d d≈ + + −  
 ( 2 / ) 2 /t r t rd h h d d h h d= + − =  (4) 
 
Substitute (4) into 2 /dφ π λ∆ ≡ ∆ , we have 4 /t rh h dφ π λ∆ ≡ . 
 

Step 2: Derivation of 
2

2

1 2

1 ( )jd e
d d

φ φ− ∆− ≈ ∆
+

 

 
Assume φ∆  is small and 1 2/( ) 1d d d+ ≈  

 
2

2 22 2 2

1 2

1 (1 cos ) sin sin (sin ) ( )jd e j j
d d

φ φ φ φ φ φ− ∆− ≈ − ∆ + ∆ ≈ ∆ = ∆ ≈ ∆
+

 (5) 

 
Finally, we can obtain (2-13a) by substituting the results in Steps 1 and 2: 

22 2 2

4
1 2

( )1
4 4

j t r
R T T R T T R T T R

h hdP P G G e P G G P G G
d d d d d

φλ λ φ
π π

− ∆ ∆   = − ≈ ≈   +   
 

 
 

b. Superimpose a 1/d4 curve on the measured curves of Figs. 2-7 and 2-8, and compare with 
the measured curves. 
 

Fig. 2-7 Received signal power as function of distance 

A: f = 836 MHz, ht = 150 m PHILADELPHIA
B: f = 900 MHz, ht = 137 m NEW YORK 
C: f = 922 MHz, ht = 140 m TOKYO 
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Fig. 2-8 Effect of base station antenna height on received power 

 
In Fig. 2-7, we can see that for all the measured curves, the rates of decrease of the 
received signal power only come close to that of the 1/d4 curve when the distance from 
the base station antenna is large enough. This is due to the fact that in the derivation of 
(2-13a), 4 /t rh h dφ π λ∆ ≡  is assumed to be small. For instance, take 0.6 radianφ∆ ≤ , 
signal frequency 836cf MHz=  ( 0.36mλ = ), 150th m=  and 1rh m= , we have 

4 150 /(0.36 0.6) 8.7d kmπ≥ × × = . In Fig. 2-8, all the measured curves have slopes 
similar to that of the 1/d4 curve, and raising the base station antenna tends to increase the 
strength of the received signal. 
 
 

c. Do the results of Fig. 2-8 validate (2-13a)? Explain. 
 
Yes. First, all the measured curves in Fig. 2-8 have the received signal powers decrease 
with distance at a rate similar to that of the 1/d4 curve. Second, as the height of the base 
station antenna hb increases, the received signal power increases. Both observations agree 
with (2-13a). 
 
 

2-6 a. Verify, as indicated in the text, that, for the Rayleigh-distributed random variable α in 

(2-15), σr
2 must equal 1/2. 

From (2-4), the instantaneous received signal power 2 1010 ( )
x

R T T RP g d P G Gα= . Taking 
expectation on both sides, we have 
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2 10[ ] [ ] [10 ] ( )
x

R R T T RP E P E E g d P G Gα= =  

Since the average received power is just ( )T T RP g d G G  and 10[10 ] 1
x

E = , this implies 
2[ ] 1E α = . From (2-15), 

2 2
3

/ 22
20

[ ] r

r

E e dα σαα α
σ

∞ −= ∫  

Substitute 2y α= , 2dy dα α= , we have 
2 2 2 2/ 2 / 2 / 2 / 22 2 2

020 0
[ ] ( ) [ 2 ] 2

2
r r r ry y y y

r r
r

yE e dy yd e ye eσ σ σ σα σ σ
σ

∞ ∞− − − − ∞= = − =− + =∫ ∫  

Therefore, 2 2[ ] 2 1rE α σ= =  or 2 1/ 2rσ =  
 
 

b. Derive (2-17a) from (2-17) and show that x and y are zero-mean random variables, each 
with variance σR

2 as defined. 
 
The actual received normalized signal ( )RS t  is given by (2-17): 

0
1

( ) cos[ ( ) ]
L

R k c k
k

S t a t tω φ
=

= − +∑  

Expanding (2-17) by trigonometry, we get 

0 0
1

( ) [cos cos ( ) sin sin ( )]
L

R k k c k c
k

S t a t t t tφ ω φ ω
=

= − − −∑  

 0 0
1 1

cos cos ( ) sin sin ( )
L L

k k c k k c
k k

a t t a t tφ ω φ ω
= =

= − − −∑ ∑  

 0 0cos ( ) sin ( )c cx t t y t tω ω= − − −  

where 
1

cos
L

k k
k

x a φ
=

≡∑ and 
1

sin
L

k k
k

y a φ
=

≡∑ . 

Consider the means of x and y. 

1
[ ] [ cos ] [ ] [cos ]

L

k k k k
k

E x E a L E a Eφ φ
=

= = ⋅∑  
1

[ ] [ sin ] [ ] [sin ]
L

k k k k
k

E y E a L E a Eφ φ
=

= = ⋅∑  

Since kφ  is uniformly distributed between 0 and 2π, [cos ] [sin ] 0k kE Eφ φ= = . Hence, 
 
 
 
Now, consider the variances of x and y. 

2 2 2

1
[( ) ] [( cos 0) ]

L

x k k
k

E x x E aσ φ
=

= − = −∑  

 2 2

1
[ cos ] 2 [ cos cos ]

L

k k i j i j
k i j

E a E a aφ φ φ
= ≠

= +∑ ∑  

[ ] [ ] 0E x E y= =
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 2 2 2

1 1

1 cos 2 1[ ( )] 0 ( )
2 2

L L
k

k k R
k k

E a E aφ σ
= =

+= + = =∑ ∑  

2 2 2

1
[( ) ] [( sin 0) ]

L

y k k
k

E y y E aσ φ
=

= − = −∑  

 2 2

1
[ sin ] 2 [ sin sin ]

L

k k i j i j
k i j

E a E a aφ φ φ
= ≠

= +∑ ∑  

 2 2 2

1 1

1 cos 2 1[ ( )] 0 ( )
2 2

L L
k

k k R
k k

E a E aφ σ
= =

−= + = =∑ ∑  

Therefore, both x and y have the same variance 2
Rσ . 

 
 

c. Starting with the Rayleigh distribution (2-21) for the received signal envelope a, show the 
instantaneous received power PR obeys the exponential distribution of (2-23).  
 
From (2-22),  2 / 2RP ca=  ⇒ 2 2 /Ra P c=  

Differentiate (2-22) with respect to RP  on both sides, we have 1

R

da
dP ca

=  

From simple probability theory, 

( ) ( )
RP R a

R

daf P f a
dP

=  

Substitute (2-21) and 2 2 /Ra P c= , we have 
2 2 2/ 2 /

2 2

1 1( ) R R R

R

a P c
P R

R R

f P e e
c c

σ σ

σ σ
− −= =  

From (2-20), 2
Rc pσ = . Put it into the above equation and we can obtain the exponential 

distribution of (2-23): 
/1( ) R

R

P p
P Rf P e

p
−=  

 
 

2-7 a. Show, following the hints provided in the text, that the Ricean distribution (2-25) 
approaches a Gaussian distribution centered about A for 2 2/ 2 1RA σ � . 

From (2-25), 
2 2

2( )
2

02 2( ) ( )R

a A

a
R R

a aAf a e Iσ

σ σ

+−

=  

According to the hints, 0 ( ) / 2zI z e zπ→  when 1z � . This corresponds to the case 
2 2/ 2 1RA σ � . With this assumption, (2-25) becomes 

2 2 2 2 2

2 2 2 2
2 ( )( ) ( )

2 2 2
2

1 1( )
2 2 2

R R R R

a A aA a aA A a A
R

a
R R R

a a af a e e e e
A AaA

σ σ σ σσ
σ π σ π σ π

+ − + −− − −

= ⋅ ⋅ = ⋅ = ⋅  
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Therefore, it is readily seen that ( )af a  peaks at about A, and, in the vicinity of that value 
of the amplitude, is closely Gaussian. 
 
 

b. Verify that the instantaneous received power distribution in the case of a direct ray is 
given by (2-27). Show that, as the K-factor gets smaller (the direct line-of-sight ray 
decreases relative to the scattered signal terms), the fading distribution of (2-27) 
approaches a Rayleigh distribution. 
 
From (2-22),  2 / 2RP ca=  ⇒ 2 2 /Ra P c=   (i) 
 
Take expectation on both sides of (2-22), 

2[ ] [ ] / 2Rp E P cE a= =  

Since  
2 2 2 2 2 2[ ] [( ) ] 2 2 (1 )R RE a E A x y A Kσ σ= + + = + = +  

we have 
 2 (1 )Rp c Kσ= +  or  2/ (1 )Rc p Kσ= +    (ii) 

Put (ii) into (i) 

 22 (1 ) /R Ra P K pσ= +   (iii) 

 

Differentiate (2-22) with respect to RP  on both sides, we have 1

R

da
dP ca

=   (iv) 

From simple probability theory, 

( ) ( )
RP R a

R

daf P f a
dP

=  

 
Substitute (iii), (iv) and (2-25) into the above expression, 

2

2
1 2( )

2
02 2

1 4(1 )( ) ( )
2

R
R

R

K AP
p

P R R
R R

K Af P e I P
c p

σ

σ σ

+− ⋅ + += ⋅ ⋅  

 
Put 2 2/ 2 RK A σ≡  and 2 /(1 )Rc p Kσ = + , we have 

1

0
(1 ) 4 (1 )( ) ( )

R

R

KK P
p

P R R
K e K Kf P e I P
p p

+− − ⋅+ += ⋅  

 
Put K=0, the expression for the instantaneous received power distribution becomes 

1( )
R

R

P
p

P Rf P e
p

−
=  
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Therefore, it is shown that as the K-factor gets smaller, ( )
RP Rf P  approaches an 

exponential distribution. 
 
 

2-8 As will be seen throughout the text, simulation is commonly used to determine the 
performance, as well as verify analysis, of cellular systems. Most critical here is the 
simulation of fading conditions. This problem provides an introduction to the simulation of 
Rayleigh fading. 

a. Consider a sequence of n random numbers xi, j =1 to n, uniformly distributed from 0 to 1. 
(Pseudo-random number generators are often available in mathematical software 
packages.) Let 

1
( / ) ( 1/ 2)n

jj
x b n x

=
= −∑ . Show x approximates a Gaussian random 

variable of zero average value and variance σ2 = b2/12n. Repeat for another set of n 
(independent) uniformly-distributed random numbers, calling the sum obtained in this 
case y. Using x and y, generate a Rayleigh-distributed random variable. Comparing with 
(2-21), what is the Rayleigh parameter σR

2 in this case? Hint: Consider the derivation of 
(2-21) starting with (2-19) and the discussion in the text following. 
 
By the Central Limit Theorem of probability, for large n, the random variable x, defined 
as the sum of n random variables, becomes approximately Gaussian-distributed. Now we 
will derive the mean and variance of x. 
 
Mean: 

1
( ) ( / ) [ ( ) 1/ 2] 0n

jj
E x b n E x

=
= − =∑  

Variance: 2 2 2 2
1

[( 0) ] ( / ) [( 1/ 2) ]n
jj

E x b n E xσ
=

= − = −∑  

 
1/ 232 21/ 22 2

1/ 2
1/ 2

( )
3 12

j
j j

yb b bn y dy
n n n−

−

 
= ⋅ ⋅ = ⋅ = 

  
∫  

 
We can generate a Rayleigh-distributed random variable a from x and y by the formula 

2 2a x y= +  and in this case the Rayleigh parameter 2 2 /12R b nσ = . 
 
 

b. A different method of obtaining the Rayleigh distribution directly from a 
uniformly-distributed random variable x is to write the expression 

22 logea xσ= −  
Show the variable a is Rayleigh-distributed. How would you now use a sequence of 
uniformly-distributed random numbers to generate a Rayleigh distribution? 
 
Rewrite the expression of a, we get 

2

2exp( )
2
ax
σ

= −  
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As a increases from 0 to ∞ , x decreases from 1 to 0. Since x is bounded by 0 and 1, the 
probability density function ( ) 1xf x = . 

2
0

2

2exp(0)
0

0 2exp( )
2

( ) 1 exp( )
2a
aP a a dx

σ σ−
< = = − −∫  

2 2

2 2 2( ) [1 exp( )] exp( )
2 2a

d a a af a
da σ σ σ

= − − = −  

 
Therefore, a is Rayleigh-distributed. We can obtain Rayleigh-distributed random 
numbers ai from a sequence of uniformly-distributed random numbers xi by directly 
applying the formula 22 logi e ia xσ= − . 
 
 

c. Choosing various values for n, generate the Rayleigh distribution using the two       
methods of a. and b., and compare, both with each other and with a plot of the Rayleigh 
distribution. What is the effect on these results of varying n?   
 
Choose 2 9Rσ = . Hence, in method a., the value of the parameter b is 108n . Each plot 
is based on the statistics of 10,000k =  data points generated by the approximation 
methods. To obtain a plot of the relative frequency density, we first divide the x-axis into 
equal intervals each of width w. Then we count the number of data points ci in each 
interval. The relative frequency density of interval i is then given by /( )ic k w× . From the 
plots we find that by increasing the value of n, method a. gives a better approximation to 
the Rayleigh  distribution. 
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d. Show how you would extend the method of a. to generate the Ricean distribution. 
Generate and plot this distribution using the pseudo-random numbers generated in c. for 
various values of the Ricean K-factor. 
 
We can extend the method of a. to generate the Ricean distribution by the formula 

2 2( )a A x y= + + , where A is a positive constant. 
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2-9 Consider the average fade duration equation (2-39). Take the case of a vehicle moving at a 
speed of 100 km/hr. The system frequency of operation is 1 GHz. Say the ratio ρ = 1. Show 
the average fade duration is 8 msec, as noted in the text. Now let the received signal 
amplitude be 0.3 of the rms value. Show the average fade duration is now 1 msec. 
 

Case (i) 1ρ = , 
3

8 9

100 10 /(60 60) 92.59
3 10 /10m

vf Hz
λ

× ×= = =
×

 1 7.4 sec.
92.59 2f

e mτ
π

−= =
×

 

Case (ii) 0.3ρ = , 92.59mf Hz=  
20.3 1 1.35 sec.

0.3 92.59 2f
e mτ

π
−= =

× ×
 

 
 

2-10 a. Summarize, in your own words, the discussion in the text on time dispersion and 
frequency-selective fading. 
 
In a wireless medium, due to reflection, scattering, diffraction and refraction, a signal 
usually reaches a destination through multiple paths of various distances. Thus, a 
receiver, instead of getting a copy of the signal, often obtains replicas of a signal which 
arrive at different times. The superposition of the delayed replicas results in the 
broadening of the signal. This is known as time dispersion, which corresponds to a 
non-flat frequency response of the channel. For relatively large signal bandwidth, one 
encounters frequency-selective fading, with different frequency components of the 
signal being handled differently over the channel, leading to signal distortion. For the 
case of digital signals, this distortion introduced by frequency-selective fading 
manifests itself in intersymbol interference (ISI), with successive digital symbols 
overlapping into adjacent symbol intervals. 
 

b. Consider several cases: a delay spread of 0.5 µsec, one of 1 µsec, and a third one of 6 
µsec. Determine whether individual multipath rays are resolvable for the two 
transmission bandwidths, 1.25 MHz used in IS-95 and cdma2000, and 5 MHz used in 
WCDMA. (See Chapter 10) 
 
For IS-95 and cdma2000, multipath echoes appearing much greater than 
1/(2 1.25) sec 0.13 secπ µ µ× ≈  apart will be resolvable. Therefore, multipath rays 
should be resolvable for delay spreads of 1 secµ  and 6 secµ , but probably not for the 
delay spread of 0.5 secµ . 
 
For WCDMA, multipath echoes appearing much greater than 1/(2 5) secπ µ×  

0.032 secµ≈  apart will be resolvable, which is valid for all the three cases of delay 
spread. 
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2-11 Indicate the condition for flat fading for each of the following data rates: 
8 kbps, 40 kbps, 100 kbps, 6 Mbps. 

Indicate which, if any, radio environments would result in flat fading for each of these data 
rates. 
 

Data Rate Symbol 
Interval 

Flat Fading 
Condition 

Radio Environment for Flat Fading 

8 kbps 125 µsec τav < 25 µsec Most environments 

40 kbps 25 µsec τav < 5 µsec Some urban environments and 
most suburban and rural environments  

100 kbps 10 µsec τav < 2 µsec Most suburban and rural environments 

6 Mbps 0.167 µsec τav < 0.033 µsec Some indoor picocellular environments 
 
 

2-12 a. Consider the transversal filter equalizer of Fig. 2-20. A training sequence of K binary 
digits is used to determine the 2N + 1 tap gains, as described in the text. Show that, 
under a minimum mean-squared performance objective, the optimum choice of tap 
gains is given by (2-53). 
 
Under a minimum mean-squared performance objective, we want to choose the tap 

gains hn,  N n N− ≤ ≤ , such that 2

1

ˆ( )
K

j j
j

s s
=

−∑  is minimum. 

To obtain the optimum choice of tap gains, we find the solution of 
2

1 1

ˆ
ˆ ˆ( ) 2( ) 0

K K
j

j j j j
j jl l

s
s s s s

h h= =

∂∂ − = − =
∂ ∂∑ ∑  

 

Since ˆ
N

j n j n
n N

s h r −
=−

= ∑  and 
ˆ j

j l
l

s
r

h −

∂
=

∂
, the above equation becomes 

 
1

ˆ2( ) 0
K

j j j l
j

s s r −
=

− =∑  

 ⇒ 
1 1

ˆ
K K

j j l j j l
j j

s r s r− −
= =

=∑ ∑  

 ⇒ 
1 1

K K N

j j l n j n j l
j j n N

s r h r r− − −
= = =−

=∑ ∑ ∑  N l N− ≤ ≤  
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b. Show the vector form of (2-53) is given by (2-56), with the solution given by (2-57). 
 

Define ,
1

K

l n j n j l
j

R r r− −
=

≡∑  and 
1

K

l j j l
j

g s r −
=

≡∑ , ,N l n N− ≤ ≤ . Equation (2-53) then takes 

on the simpler looking form 

,

N

l n l n
n N

g h R
=−

= ∑  N l N− ≤ ≤  

In matrix notation, 

 

, , 1 ,

1, 1, 1 1,1 1

, , 1 ,

N N N N N NN N

N N N N N NN N

N N N N N NN N

R R Rg h
R R Rg h

R R Rg h

− − − − + −− −

− + − − + − + − +− + − +

− − +

    
    
    =
    
     

    

�

�

� �� �

�

 or g = Rh 

 
Multiply R-1 to both sides, we have 

 R-1g = (R-1R)h or h = R-1g 
 
 

2-13 a. Work out a simple example of the transversal filter equalizer: Say the equalizer has 
three taps to be found using the minimum mean-squared performance objective. 
Choose a set of K = 10 arbitrarily-chosen binary digits as the training sequence and 
then let some of these digits be received in “error”, i.e. some are converted to the 
opposite polarity. Find the “best” set of taps in this case. Try to choose the training 
sequence so that there are equal numbers of +1 and –1 digits. Compare the tap 
coefficients with those found using the approximation of (2-58). 
 
Choose the training sequence {sj} = {1 1 -1 1 -1 -1 -1 1 1 -1} 

And the received sequence {rj} = {1 1 1 1 -1 -1 -1 -1 1 -1} 
with the third and eighth bits received in errors. 
 
From equations (2-54), (2-55) and (2-57), we find that 

=
 
 
 
 
 

g
3

6

-1

10 3 2
3 10 3
2 3 10

 
 =  
 
 

R  and 1

91 -24 -11 3 0.1716
1 -24 96 -24 6 0.6471

816
-11 -24 91 -1 -0.3284

−

    
    = = =    
    
    

h R g  

By using the approximation of (2-58), the tap coefficients 
3 0.3

1 1 6 0.6
10 10

-1 -0.1

   
   = ⋅ = ⋅ =   
   
   

approxh g  

The approximated coefficients obtained by (2-58) are very close to the exact 
coefficients obtained by (2-57). The mean-squared difference given by the 
approximated tap coefficients is just 0.0763 higher than the optimum value. 
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b. Repeat this example for a different set of transmitted digits and errors in reception. 
 
{sj} = {1 -1 -1 1 -1 1 -1 -1 1 1}

{rj} = {1 -1 1 1 1 1 -1 -1 1 1} (third and fifth bits received in errors) 

 
-3
6
1

=
 
 
 
 
 

g  
10 1 -2
1 10 1
-2 1 10

 
 =  
 
 

R  
99 -12 21 -3 -0.3718

1 -12 96 -12 6 0.6410
936

21 -12 99 1 -0.0385

    
    = =    
    
    

h  

3 0.3
1 6 0.6

10
1 0.1

   
   = ⋅ =   
   
   

- -

approxh  

 
c. Choose a larger example of a transversal filter equalizer and repeat a. and b., 

comparing with the results obtained there. 
 
In the following two examples, we use transversal filter equalizers of 11 taps (N = 5) 
adapted with 30-bit training sequences (K = 30). Since the matrix manipulation is 
cumbersome, a computer program was written to solve the optimum tap coefficients h. 
 
Example 1 

{sj} = {1 1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 -1

1 1 -1} 
{rj} = {1 1 -1 1 1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 -1

1 1 -1} (fifth to seventh bits received in error) 
 

5

24

-1
-2

-8
-7 

-7
-4
5
-2
-3

 
 
 
 
 
 
 
 
=  
 
 
 
 
 
 
 
 

g  

30 -1 -2 7 0 1 -2 9 -6 -7 14
-1 30 -1 -2 7 0 1 -2 9 -6 -7
-2 -1 30 -1 -2 7 0 1 -2 9 -6
7 -2 -1 30 -1 -2 7 0 1 -2 9
0 7 -2 -1 30 -1 -2 7 0 1 -2

  1 0 7 -2 -1 30 -1 -2 7 0 1
-2 1 0 7 -2 -1 30 -1 -2 7 0
9 -2 1 0 7 -2 -1 30 -1 -2 7
-6 9 -2 1 0 7 -2 -1 30 -1 -2
-7 -6 9 -2 1 0 7 -2 -1 30 -1
14 -7 -6 9 -2 1 0 7 -2 -1 30





=



R





 
 
 
 
 
 
 
 
 
 
 
 
 



 

0.0080
-0.0472
-0.0598
-0.1492
-0.2215
0.7994

-0.1814
-0.0115
-0.0245
-0.0222
-0.1230

 
 
 
 
 
 
 
 
=  
 
 
 
 
 
 
 
 

h  

(-0.0333  - 0.0667  0.1667  - 0.2667  - 0.2333  0.8000 

             - 0.2333  - 0.1333  0.1667  - 0.0667  - 0.1000)T

=approxh
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Example 2 
{sj} = {1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1

-1 1 1} 
{rj} = {1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1

-1 -1 1 1} (ninth to eleventh bits received in error) 
 

24

13
-4
-1
-4
-9 

-9
-4
-1
-4
13

 
 
 
 
 
 
 
 
=  
 
 
 
 
 
 
 
 

g

30 -3 2 1 -2 11 0 -3 0 -5 12
-3 30 -3 2 1 -2 11 0 -3 0 -5
2 -3 30 -3 2 1 -2 11 0 -3 0
1 2 -3 30 -3 2 1 -2 11 0 -3
-2 1 2 -3 30 -3 2 1 -2 11 0
11 -2 1 2 -3 30 -3 2 1 -2 11
0 11 -2 1 2 -3 30 -3 2 1 -2
-3 0 11 -2 1 2 -3 30 -3 2 1
0 -3 0 11 -2 1 2 -3 30 -3 2
-5 0 -3 0 11 -2 1 2 -3 30 -3
12 -5 0 -3 0 11 -2 1 2 -3 30







=



R







 
 
 
 
 
 
 
 
 
 
 



 0.1146
 0.0548
 0.0016
-0.2065
-0.2417
 0.7024
-0.2417
-0.2065
 0.0016
 0.0548
 0.1146

 
 
 
 
 
 
 
 
=  
 
 
 
 
 
 
 
 

h  

(0.4333  -0.1333  -0.0333  -0.1333  -0.3000  0.8000

             -0.3000  -0.1333  -0.0333  -0.1333   0.4333)T

=approxh
 

 
A comparison of the four examples of traversal filter equalizers is summarized in the 
table below. 

 K 2N+1 Avg. distance between 
optimum and approx. hj’s 

1

2 1
( ) ( )

N

approx
j NN

h j h j
=−+

−∑  

Optimum ms diff. 
2

1

1
ˆ( )

K

j j
jK

s s
=

−∑  

(sj - training seq.) 

Increase in ms 
diff. with 
approx. h 

1. 10 3 0.1346 0.5137 0.0763 

2. 10 3 0.0838 0.4937 0.0243 

3. 30 11 0.0772 0.2128 0.0917 

4. 30 11 0.1313 0.1397 0.4456 
 
In general, the approximated tap coefficients are very close to the exact optimum 
coefficients obtained by (2-57). Larger traversal filter equalizers with more tap 
coefficients and adapted by longer training sequences usually give better estimated 
sequences, i.e. resulting in a smaller mean square difference between the transmitted 
and the estimated signal sequences. 
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2-14 a. Plot the improvement in performance obtained with the use of dual selection diversity 
as the ratio of local-mean power to the threshold varies. Use at least the following cases: 
(1) the local-mean power 20 times the threshold; (2) local-mean power 10 times the 
threshold; (3) local-mean power equal to the threshold; (4) local-mean power 0.1 of the 
threshold. Note: Performance may be defined as outage rate or the probability that at 
least one of the channels has an instantaneous power greater than the threshold. 
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b. Repeat a. for four- and eight-fold diversity and compare all three orders of diversity. 
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In general, the higher the order of diversity, the better the performance. However, as the 
ratio of local-mean power to threshold increases, the improvement becomes less 
significant. For a ratio larger than three, there is no much difference between four- and 
eight-fold diversities. Besides, if the order of diversity is high enough, it will be hard to 
improve the performance further by more diversity branches. 
 
 

2-15 Show the optimum maximal-ratio combining gain for the kth diversity branch is given by 
(2-64). Explain the statement that the SIR is then the sum of the SIRs, summed over the N 
diversity branches. 
 

From (2-61) 
2

2 2 2
0

1 1
/ /

N N

k k k k
k k

SIR s I g a g n
= =

′≡ =∑ ∑  

 
According to Schwartz’s inequality for complex numbers, 

2 2*

1 1 1

N N N

k k k k
k k k

c d c d
= = =

   ≤ ⋅   
   

∑ ∑ ∑  

 
Choose * /k k kc a n′=  and k k kd g n′= , we have 

2 2 2 2

1 1 1
/

N N N

k k k k k k
k k k

a g a n g n
= = =

   ′ ′≤ ⋅   
   

∑ ∑ ∑  

 ⇒ 2 2 2 2

1 1 1
/ /

N N N

k k k k k k
k k k

SIR a g g n a n
= = =

′ ′≡ ≤∑ ∑ ∑  

 
SIR is maximized when equality is obtained with k kd Kc= , i.e. * /k k k kg n Ka n′ ′=  or 

2* /k k kg Ka n′= , which is the expression in (2-64).  
 

Since the SIR in this case is 2 2

1
/

N

k k
k

a n
=

′∑ , and the SIR on the kth diversity branch is just 

given by 2 2/k ka n′ , we can state that the resultant SIR is the sum of the SIRs over the N 
diversity branches. 
 
 

2-16 a. Explain how equal-gain combining differs from maximal-ratio combining. In particular, 
write an expression for the SIR in the case of equal-gain combining. Hint: How would 
this expression compare with (2-61)? 
 
Equal-gain combining differs from maximal-ratio combining in that the gains gk over 
all diversity branches are the same, rather than being adjusted according to the SIR on 
the respective branch. Hence, in equal-gain combining the diversity channel outputs are 
simply added together. The SIR in this case is 
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2
2

1 1
/

N N

k k
k k

SIR a n
= =

′= ∑ ∑  

 
b. Why would you expect the performance of diversity schemes to be ranked in the order 

maximal-ratio combining best, equal-gain next best, selection diversity last?  
 
We can rank the performance of the three diversity schemes by comparing their 
respective SIR’s. First, the SIR of the maximal-ratio scheme must excel that of the 
equal-gain scheme, based on the fact that the branch gains of the maximal-ratio 
schemes are adapted to maximize the SIR. Next, we will show that the SIR of the 
equal-gain scheme should in general be larger than that of the selection scheme. 
Consider the SIR of the selection scheme. Suppose the signal on the ith branch has the 
largest SIR, then 

2 2

2 2max{ }k i
selection k

k i

a a
SIR

n n
= =

′ ′
 

Since the SIR on each branch 2 2/k ka n′  is usually greater than one, we can write the 
following inequality: 

2 2

2
1

2 2 2
2

1

N

i k k
i k i k

selection equal gainN
i i k

kk i
k

a a a
a

SIR SIR
n n n n

≠ =
−

≠
=

+
= < = =
′ ′ ′+ ′

∑ ∑

∑ ∑
 

Therefore, it can be concluded that the performance of maximal-ratio combining is the 
best, equal-gain combining is the next best, and selection combining is the last. 
 
 

2-17 a. Explain the operation of the RAKE receiver in your own words. 
 
A RAKE receiver boosts up the signal reception performance by combining 
separately-arriving rays of a signal transmitted over a fading channel. The technique 
can only be applied to very wideband wireless systems, such as the CDMA, in which 
the delay spread over a fading channel is greater than the symbol period, and as a result 
individual components of the multipath signal can be separately distinguished. The 
differential delays as well as relative phases and amplitudes of the individual multipath 
components need to be estimated accurately, so that the different received rays can be 
shifted in time, compensating for the differential delays, and then be combined using 
the maximal-ratio scheme. In practice, only a few of the earliest arriving rays, normally 
the strongest in power, are used to carry out the RAKE processing. 
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b. Two third-generation CDMA systems are discussed in chapter 10. The first, W-CDMA, 
uses a chip rate of 3.84 Mcps (million chips per second), with a corresponding chip 
duration of 0.26 µsec; the second system, cdma2000, uses a chip rate of 1.2288 Mcps, 
with a chip duration of 0.81 µsec. (This is the same chip rate used by the 
second-generation CDMA system IS-95 discussed in chapters 6 and 8.)  Explain the 
statements made in chapter 10 that RAKE receivers can be used to provide multipath 
time-diversity for paths differing in time by at least those two chip durations, 
respectively. Which system potentially provides better RAKE performance? 
 
In CDMA, multipath components separated in time over a chip duration are orthogonal 
to each other and hence can be individually received by applying the same 
pseudorandom code at different times which correspond to the arrivals of the delayed 
signals. The receiving system can rapidly scan through different delay values of the 
received rays, searching for the sequence corresponding to the one transmitted. Once a 
number of such differentially-delayed received signals are identified, delay 
compensation can be carried out and maximal-ratio combining used to recover the 
transmitted sequence. 
 
W-CDMA, having a shorter chip duration, should potentially provide a better RAKE 
performance. 
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