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Chapter 2 Fundamental Concepts 

SECTION 2.1  Sets 

 

 1. a. 0   or 0 {}   b.  3 B   

 2. a. D E   b. A U   

 3. a. {e, l, m, n, t, a, r, y} and {x | x is a letter in the word “elementary”} 

or {x | x is one of these letters: e, l, m, n, t, a, r, y}. 

  b. {Spain, Portugal, France, Ireland, United Kingdom (England/Scotland), Western Russia, 

Germany, Italy, Austria, Switzerland, Belgium, Netherlands, Estonia, Latvia, Denmark, Sweden, 

Norway, Finland, Poland, Bulgaria, Yugoslavia, The Czech Republic, Slovakia, Romania, Greece, 

Macedonia, Albania, Croatia, Hungary, Bosnia and Herzegovina, Ukraine, Belarus, Lithuania}. 

Also {x | x is a country in Europe}. 

  c. {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}. 

Also {x | x is a prime less than 100}. 

  d. The set of fractions between 0 and 1 is infinite. 

{x | x is a fraction between zero and one}. 

  e. {name1, name2, name3, etc.}. 

{x | x is a student in this class}. 

 4. a.    b. ∈ c.    d.    

  e. True   f. False; red is an element, not a set. 

  g. False; gray is not in set S.  h. True 

 5. a. ∈; 3 is an element of the set. b.  ; {3} is a subset of the set. 

  c. ∈; {1} is an element of this set of sets. d.  ; {a} is a subset of the set. 

  e.  or   ; {ab}  is neither a subset nor an element.  

  f.  ; the null set is a subset of every set. 

 6. a. 64 b. A set with n elements has 2n subsets. 

 7. a.     b.   
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  c.    d. F S   

      Females who smoke. 

    e. ( )F S P   

      Males who smoke and have a health problem. 

 

 

 

   Nonsmokers who either are 

female or have health problems. 

 

 8. a. Students who are members of at least two of the film, science, and computer clubs. 

( ) ( ) ( )F S S C C F   

  b. Students who are members of both the science and computer clubs, but not the film club. 

 F S C  

  c. ( )C S F    d. F S C   

 

 

 

 

 

 

 

 

9. a.   

 

 

 

 

 

 

 

 

  b. All numbers that don’t evenly divide 12, 15, or 20; A B C or A B C  

 

  c. All numbers that evenly divide 12 and 20, but not 15;   B A C  

 

  d. All numbers except 1 and 3.   
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  e. All numbers from 1 to 20, except those that divide 12 or 15 evenly. 

 

 

 

 

 

 

 

 

 

 

  f. Note: This description is ambiguous; it depends on how one interprets “or.” A B    

  

    

 

 

 

 

 

 

  

 

 10. a. Students who have at least one cat and  b. Students who have neither cats nor dogs. 

   at least one dog. 

 

 

 

 

 

 

 

 

 

 

  c. Students who have at least one cat, at d. D C  

   least one dog, and at least one other pet.  
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  e. D C O  f.  O D C  

 

 

 

 

 

 

 

 

 

  g. D C O  or  D C O  h. ( )C D O  

   Students who have no pets.  Students who have at least one cat and no other 

pets.  

  

 11. 15 possible committees.  Label the members with A, B, C, D, E, and F. 

  The committees could be:  AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF, EF. 

 

 12. a. and b. Answers will vary. 

 

 13. Answers will vary. 

  

 14. Answers will vary. 

 

 15. The circles enable us to easily represent visually all the possible subsets. 

  The diagram is not equivalent because there is no region corresponding to elements that are in all three 

  sets.  

 

 16.  

 

 

 

 

 

 

 

 

 

 

 17. a. 6 + 8 + 12 + 3 = 29% b. 6 + 25 + 15 = 46% 

 

  c. Those people who agree with his foreign policy and those people who agree with his economic 

and his social policy. 
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 18. a.   b. Yes, they are well defined. 

 

 

 

 

 

 

 

 

 

 19. a. Construct a Venn diagram. 100 – 11 – 10 – 23 = 56% 

 

    

 

 

 

 

 

 

   

  b. 11 + 23 = 34% 

 

 20. a. A lesson in which the teacher would be using a lab approach with small groups. 

 

  b. Lessons that use a lab approach and concrete materials and/or small groups. 

 

 21. Answers will vary. 

 

 22. a. Theoretically, there are four possibilities. I would pick the one at the left, because I think there can 

be successful people who are not very intelligent, intelligent people who are not successful, people 

who are successful and intelligent, and people who are neither. 

 

   
  

  b. Answers will vary. 

 

 23. Answers will vary. 

 

  

  

U 

Craigslist  ebay 

       35     40           25  
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SECTION 2.2  Numeration 

 
  

 1. a.  Maya Luli South American 

 7  lokep moile tamlip  

 8   teyente toazumba 

 12   caya-ente-cayupa 

 13  is yaoum moile tamlip caya-ente-toazumba 

 15  is yaoum is alapea  

 16 uac-lahun is yaoum moile lokep moile tamop toazumba-ente-tey 

 21 hun hunkal is eln yaoum moile alapea cajesa-ente-tey 

 22 ca huncal is eln yaoum moile tamop cajesa-ente-cayupa 

  b. Answers will vary. 

  c. Answers will vary. 

  

 2. a. 3031  b. 230,012 c. 1666 d. 1519 

  e. 109   f. 75,602 g. 133 h. 23 

   

 3.     Egyptian Roman Babylonian 

  a. 312 

  b. 1206 

  c. 6000 

  d. 10,000 

  e. 123,456 

 

 4 a.  87   b.  360  c.  5407 

 

  d.    e.   f.  

   

  

 5. a. 26   b. 240 c. 25 d. 450 

  e. three thousand four hundred f. 3450 

   

 6. a. 400    b. –7770 = c. +80,000 = d. +4040 =  

  e. 346,733    f. –111,111 = g. Answers will vary. 
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 7. a.

 

 

  b.  

 8. a. 23 10 4 10 5      b. 32 10 1   c. 4 21 10 1 10 1     

   

 9. a. 4859   b. 30,240 c. 750,003 

   

 10. a. 40five b.  1100two c.  9asixteen d.  709asixteen 

  e. 110two f.  112twelve g.  130five h.  410six 

 11. a. 1004five
 

b.  334five
 

c.  0ffsixteen
 

d.  1101two
 

  e. 1001two
 

f.  10fsixteen
 

g.  113four
 

h.  56seven
 

 

 12. a. 1009 

  b. MIMIC 1000 1 1000 1 100 2102       

  c. Answers will vary.  

 

 13. a. 500 10 10 5 1 1 527       

  b. 100 50 10 10 5 1 176       

  c.  

  d.  

 

 14. a. 32,570   b. 646 

  c.    d.  

  

 15. a.

  

  b. 
 

  c. 460,859 

  d. 135,246 
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 16. a. (1)   No: Needs a new symbol for each new power of ten. 

   (2)   Sort of: The value of each numeral is 10 times the value of the previous numeral. 

   (3)   Sort of: By decorating each basic symbol, you now have one basic symbol for each place, the 

number of dots on the symbol varies. 

   (4)   No. 

   (5)   Sort of: though, given the origin of this system, it would be more likely to be counted.  For 

example, 2 thousands, 8 hundreds, etc.  However, technically, you would multiply the value 

of each basic symbol by the number of dots on the symbol. 

   (6)   No zero. 

  b. It has characteristic 2:  The value of each place is 10 times the value of the previous place.  It "sort 

of" has characteristic 3, with the modification that each "place" contains two symbols.  Some 

might say that it has characteristics 4 and 5, but the order of the numerals is still a matter of 

convention – unlike base 10, where changing the order changes the value. 

 

  c. This system has all characteristics. 

 

 17. a. 585 cartons of milk 

  b. It has all 6 characteristics because this system is essentially base 6.  The places are called cartons, 

boxes, crates, flats, and pallets.  The value of each place is 6 times that of the previous place. 

 18.  1:0:58:4 or 1 hour, 58.04 seconds  

 19. The child does not realize that every ten numbers you need a new prefix.  At “twenty-ten” the ones 

place is filled up, but the child does not realize this.  Alternatively, the child does not realize the cycle, 

so that after nine comes a new prefix.  

 20. The child skipped thirty, because he or she does not think of the zero in the ones place as a number. 

The child counts from one to nine and starts over.  In this case, the child has internalized the natural 

numbers (N), but not the whole numbers (W).  

 21. Yes, 5 is the middle number between 0 and 10 

 22. Because the Hindu-Arabic system has place value and a place holder (zero, 0), it allows extremely 

large numbers to be represented with only 10 symbols. It is also much less cumbersome, since it only 

takes six digits to represent one hundred thousand. 

 23. We mark our years, in retrospect, with respect to the approximate birth year of Jesus Christ—this is 

why they are denoted 1996 A.D.; A.D. stands for Anno Domini, Latin for “in the year of our Lord.” 

Because we are marking in retrospect from a fixed point, we call the first hundred years after that point 

the first century, the second hundred years the second century, and so on. The first hundred years are 

numbered zero (for the period less than a year after Jesus’ birth) through ninety-nine. This continues 

until we find that the twentieth century is numbered 1900 A.D. through 1999 A.D. 

 24. In our numeration system every three digits have a different name, such as thousands, millions, and 

billions. 

 25. Place value is the idea of assigning different number values to digits depending on their position in a 

number. This means that the numeral 4 (four) would have a different value in the “ones” place than in 

the “hundreds” place, because 4 ones are very different from 4 hundreds. (That’s why 4 isn’t equal to 

400.) 

 26. If we use 2 feet as our average shoulder width, and we use 25,000 miles as the circumference of Earth, 

we have 25,000 miles  5280 feet per mile divided by 2 feet per person = 66,000,000. 
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 27. a. 11.57 days 

 

  b. 11,570 days, or 31.7 years. 

 28. a. 94.7 miles. Depending on the value you use for the length of a dollar bill, you might get a slightly 

different amount. 

 

  b. 94,700 miles long, or almost 4 times around Earth! 

 29. a. 21   b. 35 c. 55 d. 279 

  e. 26   f. 259 g. 51 h. 300 

  i. 13   j. 17 k. 153 l. 2313 

 

 30. a. 134five  b. 1102five c. 1011100two d. 11001110two 

  e. 60twelve  f. 192sixteen g. 112six h. 5444six 

  i. 90sixteen  j. 400five k. 63sixteen l. 13202five 

  m. 1120000000five  

  n. 100 110 001 001 011 010 000 0 (The spaces are only for readability.) 

    

 31. base 9 

 32. base 9 

 33. x = 9 

 34. 50x  candy bars, x = 6 

 35. This has to do with dimensions.  The base 10 long is 2 times the length of the base 5 long.  When we 

go to the next place, we now have a new dimension, so the value will be 2 2  as much.  This links to 

measurement.  If we compare two cubes, one of whose sides is double the length of the other, the ratio 

of lengths of sides is 2:1, the ratio of the surface area is 4:1, the ratio of the volumes is 8:1. 

 36. a. Just as each of the places in a base 10 numeral has a specific value that is a power of 10, each of 

the places in a base 5 numeral also has a value, but in a base 5 numeral these values are powers of 

5.  Let’s look at this diagram: 

 ___ __ __ ___
5 

 125 25 5 1 

 
35  

25  
15  

05  

   We can see that the places of a base 5 number, starting from the right, have the values 1, 5, 25, and 

125.  Now we ask ourselves how many times these go into 234ten ∙ 125 goes into 234 once, leaving 

109; there are four 25s in 109, leaving 9; and, finally, the 9 can be written as one 5 and four 1s, so 

our number is 12145. 

   1     4     1     4   five       

 125 25 5 1 

 
35  25  

15  05  

b. A similar chart can be created to show that  405eight = (4 × 64) + (0 × 8) + (5 × 1) = 261ten 
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 37. a.

   

  b. 

  

  c. 

  

 38. a. 7777 

  b. f f f  

 39. Answers will vary. 

 40. 1four, 2four, 3four, 10four, 11four, 12four, 13four, 20four, 21four, 22four, 23four, 30four, 31four, 32four, 33four, 100four, … 

 41. 835 

 42. (9 × 10) + (5 × 1) + (8 × 100) = 90 + 5 + 800 = 895; the correct answer is b. 

 43. (12 × 10) + 30,605 = 120 + 30,605 = 30,725; the correct answer is b. 

 44. (6 × 100,000) + (23 × 100) = 600,000 + 2300 = 602,300; the correct answer is c. 

 45. The digit being replaced is in the tens place. So, if the digit 1 is replaced by the digit 5, the number is 

increased by (5 × 10) – (1 × 10) = 50 – 10 = 40. The correct answers is b. 
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CHAPTER 2 REVIEW EXERCISES 
 

 1. a. {x | x = 10n, n = 0, 1, 2, 3, …} 

b.  10, 100, 1000, 10,000,...  or  1 2 310 , 10 , 10 , ...  

2. a.     b.    c.    d.    

3. a. D E    b.    0  

4. a.   

 

 

 

 

b. 5, 15, 25  

c. The set of even numbers between 0 and 30. 

5. a.      b. 

 

 

 

 

  

6. 50 have both. 

  

7. The former means the same elements, and the latter means the same number of elements. 

8.    Egyptian Roman Babylonian 

  a.  47  XLVII   

  b.  95  XCV  

  c. 203  CCIII  

  d.  3210  MMMCCX  

   

9.   a.  410five   b.  1300five c.  1010two 

 10.    a.  4314five  b.  30034five  c.   1011two 

 11. 25 2 4 5 3 73      

 12. Because 1000five = 125ten, I would rather have $200ten. 

CE

S

CE

S

AU B

        1   3

  7   9   11  13

17  19  21  23

      27  29

 5

15

25

 0

10

20

 2    4    6    8

12  14  16  18

22  24  26  28

30
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 13. They both have the value of 3 flats, 2 longs, and 1 single.  Because base 6 flats and longs have greater 

value than base 5 flats and longs, the two numbers do not have the same value. 

 14. Because we are dealing with powers.  Thus, the value of a base 10 flat is 2 2 4   times the value of a 

base 5 flat. 

 15. The value of the 5th place in base 10 is 410 10,000 .  The value of the 5th place in base 5 is 45 625 .  

10000 625 16  . 

 16. There are many possible responses.  Here are three: "One-zero" is the amount obtained when the first 

place is full.  It means you have used up all the single digits in your base.  It is the first two-digit 

number. 

 17. There are several equivalent representations: 

   

3 2 1 0

3 1 0

2000 60 8

2 1000 0 100 6 10 8 1

2 1000 6 10 8 1

2 10 0 10 6 10 8 10

2 10 6 10 8 10

 

      

    

      

    

 

   18. Answers will need to include all six characteristics described in the section. 
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Section 2.2

Numeration
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In Section 2.2, we will explore:

• Origins of Numbers and Counting

• Numeration Systems

• Base 10

• Units and Other Bases
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Origins of Numbers and 
Counting
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Origin of Numbers and Counting

The Common Core State Standards have kindergarten 
students gaining a foundation for place value by using 
objects and drawings to understand that the numbers 
11 to 19 are composed of one ten and a certain number 
of ones. Developing a deeper understanding of place 
value continues through the elementary school years 
and supports understanding the operations as well.
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Origin of Numbers and Counting

Did you know that people had to invent counting?

The earliest systems must have been quite simple, 
probably tallies. The oldest archaeological evidence of 
such thinking is a wolf bone over 30,000 years old, 
discovered in the former Czechoslovakia.

On the bone are 55 notches in two rows, divided into 
groups of five. We can only guess what the notches 
represent—how many animals the hunter had killed or 
how many people there were in the tribe.
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Origin of Numbers and Counting

Other anthropologists have discovered how shepherds 
were able to keep track of their sheep without using 
numbers to count them. Each morning as the sheep left 
the pen, the shepherds made a notch on a piece of 
wood or on some other object.

In the evening, when the sheep returned, they would 
again make a notch for each sheep. Looking at the two 
tallies, they could quickly see whether any sheep were 
missing. 
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Origin of Numbers and Counting

Anthropologists also have discovered several tribes in the 
twentieth century that did not have any counting systems!

The beginnings of what we call civilization were laid when 
humans made the transition from being hunter-gatherers 
to being farmers. 

Archaeologists generally agree that this transition took 
place almost simultaneously in many parts of the world 
some 10,000 to 12,000 years ago.

It was probably during this transition that the need for 
more sophisticated numeration systems developed. 
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Origin of Numbers and Counting

For example, a tribe need kill only a few animals, but one 
crop of corn will yield many hundreds of ears of corn.

The invention of numeration systems was not as simple as 
you might think. 

The ancient Sumerian words for one, two, and three were 
the words for man, woman, and many. 

The Aranda tribe in Australia used the word ninta for one 
and tara for two. Their words for three and four were 
tara-ma-ninta and tara-ma-tara.
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Origin of Numbers and Counting

Requirements for counting In order to have a counting 
system, people first needed to realize that the number of 
objects is independent of the objects themselves. Look at 
the figure below. What do you see?

There are three objects in each of the sets. However, the 
number three is an abstraction that represents an amount.
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Origin of Numbers and Counting

Archaeologists have found that people didn’t always 
understand this.

For example, the Thimshians, a tribe in British Columbia, 
had seven sets of words in their language for each number 
they knew, depending on whether the word referred to

1. animals and flat objects, 
2. time and round objects, 
3. humans, 
4. trees and long objects, 
5. canoes, 
6. measures, and 
7. miscellaneous objects.
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Origin of Numbers and Counting

Whereas we would say three people, three beavers, three 
days, and so on, they would use a different word for 
“three” in each case. 

There is another aspect of counting that needs to be 
noted. 

Most people think of numbers in terms of counting 
discrete objects.
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Origin of Numbers and Counting

However, this is only one of the contexts in which numbers 
occur. For example, in Figure 2.24, there are 3 balls, there 
are 3 ounces of water in the jar, and the length of the line 
is 3 centimeters.

In the first case, the 3 tells us how many objects we have.
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Origin of Numbers and Counting

However, in the two latter cases, the number tells how 
many of the units we have. In this example, the units are 
ounces and centimeters. 

Working with numbers that represent discrete amounts is 
more concrete than working with numbers that represent 
measures.

We distinguish between number, which is an abstract idea 
that represents a quantity, and numeral, which refers to 
the symbol(s) used to designate the quantity.
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Origin of Numbers and Counting

As humans developed names for amounts larger than the 
number of fingers on one or two hands, the names for the 
larger amounts were often combinations of names for 
smaller amounts.

People who have investigated the development of 
numeration systems, from prehistoric tallies to the Hindu 
Arabic system, have discovered that most of the 
numeration systems had patterns, both in the symbols and 
in the words, around the amounts we call 5 and 10.
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Origin of Numbers and Counting

However, a surprising number of systems also show 
patterns around 2, 20, and 60. For example, the French 
word for eighty, quatre-vingts, literally means “four 
twenties.”

As time went on, people developed increasingly elaborate 
numeration systems so that they could have words and 
symbols for larger and larger amounts.

We will examine three different numeration systems—
Egyptian, Roman, and Babylonian—before we examine our 
own base ten system.
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Numeration Systems
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Numeration Systems

Egyptian System

The earliest known written numbers are from about 5000 
years ago in Egypt. The Egyptians made their paper from a 
water plant called papyrus that grew in the marshes.

They found that if they cut this plant into thin strips, 
placed the strips very close together, placed another layer 
crosswise, and finally let it dry, they could write on the 
substance that resulted.

Our word paper derives from their word papyrus.
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Numeration Systems

Symbols in the Egyptian system
The Egyptians developed a numeration system that 
combined picture symbols (hieroglyphics) with tally marks 
to represent amounts. The table below gives the primary 
symbols in the Egyptian system.

The Egyptians could represent numerals using 
combinations of these basic symbols.
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Numeration Systems

Egyptian System

Take a few minutes to think about the following questions.

1. What do you notice about the Egyptian system? Do you
see any patterns?

2. What similarities do you see between this and the more 
primitive systems we have discussed?

3. What limitations or disadvantages do you find in this 
system?
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Numeration Systems

Egyptian System
The Egyptian numeration system resembles many earlier 
counting systems in that it uses tallies and pictures. In this 
sense, it is called an additive system.

Look at the way this system represents the amount 2312. 
In one sense, the Egyptians saw this amount as 
1000 + 1000 + 100 + 100 + 100 + 10 + 1+ 1 and wrote it as

. In an additive system, the value of a

number is literally the sum of the digits.

However, this system represents a powerful advance: The 
Egyptians created a new digit for every power of 10.
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Numeration Systems

Egyptian System
They had a digit for the amount 1. To represent amounts 
between 1 and 10, they simply repeated the digit. For the 
amount 10, they created a new digit. 

All amounts between 10 and 100 can now be expressed 
using combinations of these two digits. For the amount 
100, they created a new digit, and so on.

These amounts for which they created digits are called 
powers of ten. From your work with exponents from 
algebra, that we can express 10 as 101 and 1 as 100.
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Numeration Systems

Egyptian System
Thus we can express the value of each of the Egyptian 
digits as a power of 10:

The Egyptian system was a remarkable achievement for its 
time. Egyptian rulers could represent very large numbers. 
One of the primary limitations of this system was that 
computation was extremely cumbersome. 

It was so difficult, in fact, that the few who could compute 
enjoyed very high status in the society.
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Numeration Systems

Roman System
The Roman system is of historical importance because it 
was the numeration system used in Europe from the time 
of the Roman Empire until after the Renaissance.

In fact, several remote areas of Europe continued to use it 
well into the twentieth century.

Some film makers still list the copyright year of their films 
in Roman numerals.
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Numeration Systems

Symbols in the Roman System

The table below gives the primary symbols used by early 
Romans and later Romans.
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Numeration Systems

Roman System

Like the Egyptians, the Romans created new digits with 
each power of 10, that is, 1, 10, 100, 1000, etc. However, 
the Romans also created new digits at “halfway” 
amounts— that is, 5, 50, 500, etc.

This invention reduced some of the repetitiveness that 
encumbered the Egyptian system. For example, 55 is not 
XXXXXIIIII but LV.

Basically, the Roman system, like the Egyptian system, was 
an additive system. However, the Later Roman system 
introduced a subtractive aspect.
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Numeration Systems

Roman System

For example, IV can be seen as “one before five.” This 
invention further reduced the length of many large 
numbers.

As in the Egyptian system, computation in the Roman 
system was complicated and cumbersome, and neither 
system had anything resembling our zero.
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Numeration Systems

Babylonian System

The Babylonian numeration system is a refinement of a 
system developed by the Sumerians several thousand 
years ago. Both the Sumerian and Babylonian empires 
were located in the region occupied by modern Iraq.

The Sumerians did not have papyrus, but clay was 
abundant. Thus they kept records by writing on clay 
tablets with a pointed stick called a stylus.

Thousands of clay tablets with their writing and numbers 
have survived to the present time; the earliest of these 
tablets were written almost 5000 years ago.
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Numeration Systems

Symbols in the Babylonian System

Because the Babylonians had to make their numerals by 
pressing into clay instead of writing on papyrus, their 
symbols could not be as fancy as the Egyptian symbols.

They had only two symbols, an upright wedge that 
symbolized “one” and a sideways wedge that symbolized 
“ten.” In fact, the Babylonian writing system is called 
cuneiform, which means “wedge-shaped.”
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Numeration Systems

Babylonian System

Amounts could be expressed using combinations of these 
numerals; for example, 23 was written as           .

However, being restricted to two digits creates a problem 
with large amounts. The Babylonians’ solution to this 
problem was to choose the amount 60 as an important 
number.

Unlike the Egyptians and the Romans, they did not create 
a new digit for this amount. Rather, they decided that they 
would have a new place. For example, the amount 73 was 
represented as             .
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Numeration Systems

Babylonian System

That is, the   at the left represented 60 and the            to 
the right represented 13. In other words, they saw 73 as 
60 + 13.

Similarly,                was seen as six 60s plus 12, or 372.

We consider the Babylonian system to be a positional 
system because the value of a numeral depends on its 
position (place) in the number.
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Numeration Systems

Babylonian System

To represent larger amounts, the Babylonians invented the 
idea of the value of a digit being a function of its place in 
the numeral. 

This is the earliest occurrence of the concept of place 
value in recorded history. With this idea of place value, 
they could represent any amount using only two digits,   
and    .      

We can understand the value of their system by examining 
their numerals with expanded notation. Look at the 
following Babylonian number:  
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Numeration Systems

Babylonian System
Because the         occurs in the first (or rightmost) place, 
its value is simply the sum of the values of the digits—that 
is, 10 + 10 + 1 = 21. However, the value of the             in 
the second place is determined by multiplying the face 
value of the digits by 60—that is, 60  23.

The value of the      in the third place is determined by 
multiplying the face value of the digits by 602—that is, 
602  2.

The value of this amount is
(602  2) + (60  23) + 21 = 7200 + 1380 + 21 = 8601.
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Numeration Systems

Babylonian System

Thus, in order to understand the Babylonian system, you 
have to look at the face value of the digits and the place of 
the digits in the numeral. 

The value of a numeral is no longer determined simply by 
adding the values of the digits. One must take into account 
the place of each digit in the numeral.

The Babylonian system is more sophisticated than the 
Egyptian and Roman systems. However, there were some 
“glitches” associated with this invention.
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Numeration Systems

Babylonian System

If we represent this amount from the Babylonian 
perspective, we note that 602 = 3600. Thus the 
Babylonians saw 3624 as 3600 + 24.

They would use   in the third place to represent 3600, and 
they would use          in the first place to represent 24, 
but the second place is empty. Thus, if they wrote 

, how was the reader to know that this was not
60 + 24 = 84?

A Babylonian mathematical table from about 300 B.C. 
contains a new symbol       that acts like a zero.
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Numeration Systems

Babylonian System
Using this convention, they could represent 3624 as

The slightly sideways wedges indicate that the second 
place is empty, and thus we can unambiguously interpret 
this numeral as representing

602 + 0 + 24 = 3624

This later Babylonian system is thus considered by many 
scholars to be the first place value system3 because the 
value of every symbol depends on its place in the numeral 
and there is a symbol to designate when a place is empty.
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Numeration Systems

Mayan System

One of the most impressive of the ancient numeration 
systems comes from the Mayans, who lived in the Yucatan 
Peninsula in Mexico, around the fourth century A.D.

Many mathematics historians credit the Mayans as being 
the first civilization to develop a numeration system with a 
fully functioning zero.
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Numeration Systems

Mayan System
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Numeration Systems

Mayan System

The table below shows their symbols for the amounts 1 
through 20. Note that they wrote their numerals vertically.

Their numeral for 20 consisted of one dot and their symbol 
for zero. Thus, their numeral for 20 represents 1 group of 
20 and 0 ones, just as our symbol for 10 represents 1 
group of 10 and 0 ones.
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Numeration Systems

Mayan System

Theirs was not a pure base twenty system because the 
value of their third place was not 20 × 20 but 18 × 20.

The value of each succeeding place was 20 times the value 
of the previous places. The values of their first five places 
were 1, 20, 360, 7200, and 14,400.
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Numeration Systems

Hindu-Arabic System

The numeration system that we use was developed in 
India around A.D. 600. By A.D. 800, news of this system 
came to Baghdad, which had been founded in A.D. 762.

Leonardo of Pisa traveled throughout the Mediterranean 
and the Middle East, where he first heard of the new 
system.

In his book Liber Abaci (translated as Book of  
Computations), published in 1202, he argued the merits of 
this new system.
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Numeration Systems

Hindu-Arabic System
The figure below traces the development of the ten digits 
that make up our numeration system.
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Numeration Systems

Hindu-Arabic System

The development of numeration systems from the most 
primitive (tally) to the most efficient (base ten) has taken 
tens of thousands of years.

Although the base ten system is the one you grew up with, 
it is also the most abstract of the systems and possibly the 
most difficult initially for children.

Stop and reflect on what you have learned thus far in your 
own investigations.
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Section 2.2

Base 10
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Base 10

Our base ten numeration system has several  characteristics 
that make it so powerful.

No tallies The base ten system has no vestiges of tallies.
Any amount can be expressed using only 10 digits: 0, 1, 2,
3, 4,5, 6, 7, 8, and 9. In fact, the word digit literally means
“finger.”
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Base 10

Decimal system The base ten system is a decimal system, 
because it is based on groupings (powers) of 10. The value 
of each successive place to the left is 10 times the value of 
the previous place:

Ten ones make one ten.

Ten tens make one hundred.

Ten hundreds make one thousand.

Ten thousands make ten thousand.
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Base 10

Expanded form When we represent a number by 
decomposing it into the sum of the values from each place, 
we are using expanded form. There are different variations 
of expanded form. 

For example, all of the expressions below emphasize the 
structure of the numeral, 234—some more simply and some 
using exponents.

234 = 200 + 30       + 4

= 2  100 + 3  10 + 4  1

= 2  102 + 3  101 + 4  100

Note: 101 = 10 and 100 = 1.
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Base 10

The concept of zero “The invention of zero marks one of the 
most important developments in the whole history of 
mathematics.”6 This is the feature that moves us beyond the 
Babylonian system. 

Recall the Babylonians’ attempts to deal with the confusion 
when a place was empty.
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Base 10

It was the genius of some person or persons in ancient India 
to develop this idea, which made for the most efficient 
system of representing amounts and also made 
computation much easier. 

One of the most difficult aspects of this system is that the 
symbol 0 has two related meanings: In one sense, it works 
just like any other digit (it can be seen as the number 0), and 
at the same time, it also acts as a place holder.
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Section 2.2

Units and Other Bases

Copyright © Cengage Learning. All rights reserved. 



Units and Other Bases

There is an old parable that says a journey of 1000 miles 
begins with a single step. The same can be said for counting. 
We always begin with 1. However, unlike the phrase “a rose 
is a rose is a rose,” a 1 is not always the same. 

For example, a 1 in the millions place represents 1 million. 
This is the power of our numeration system, but it is very 
abstract.

When counting objects, one is our key term. When asked to 
count a pile of objects, for example, 240 pennies, children 
will count one at a time.
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Units and Other Bases

However, if they lose their count, they have to start all over. 
Some children realize that they can put the pennies into 
piles of 10. Now if they lose count, they can go back and 
count by tens, for example, 10, 20, 30, 40, etc.

In this case, 10 is a key term, that is, it is composed of a 
number of smaller units. Some children can see that 1 pile is 
also 10 pennies. To be able to hold these two amounts 
simultaneously is a challenge for young children, and it is an 
essential milestone along the way.
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Units and Other Bases

We have composite units everywhere: 100 is equivalent to 
ten 10s, 1000 is equivalent to ten 100s. In fact, our language 
shows this: some people will say thirty-four hundred for 
3400. 

We talk about 1 dozen eggs, a case of soda (24 cans), and a 
pound (16 ounces).

When we say that we will need 6 dozen eggs for a pancake 
breakfast fundraiser, we can see 6 dozen and we also know 
that this is 72 individual eggs.
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Units and Other Bases
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Units and Other Bases

Any base—base two, base five, base ten, base twelve, 
etc…will have the following fundamental characteristics:

1. Any base has the same number of symbols as the 
number of base. In a base ten system, we have ten 
symbols (0-9) and in a base five system we have five 
symbols (0-4). With those symbols we can represent any 
amount.

2. The value of each place is the base times the previous 
place. In base ten, the value of the places are ones, ten, 
ten2, ten3, etc. Similarly, in base five the value of the 
places are ones, five, five2, five3, etc.
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Units and Other Bases

Any base—base two, base five, base ten, base twelve, 
etc…will have the following fundamental characteristics:

3. Each place can contain only one symbol. When a place is 
full, we “move” to the next place by trading (regrouping) to 
the next higher place.

4. The value of a digit depends on its place in the numeral.

5. The value of a numeral is determined by multiplying each 
digit by its place value and then adding these products.

6. Zero represents an empty place and 0 represents an 
actual amount, with a place value on the number line.
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Units and Other Bases
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Section 2.1

Sets
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In Section 2.1, we will explore:

• The Language and Notation of Sets

• Venn Diagrams

• Operations on Sets

• Relationships between Sets
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The Language and Notation of 
Sets
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The Language and Notation of Sets

Sets as a Classification tool

• Children use set ideas in everyday life as they look for 
similarities and differences between sets; for 
example, they want to know why lions are in the cat 
family and wolves are in the dog family.

• Children also look for similarities and differences 
within sets; for example, they look within a set of 
blocks for the blocks that they can stack and the 
blocks that they can’t.

• Whether we realize it or not, we are classifying many 
times each day, and our lives are shaped by 
classifications that we and others have made.
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The Language and Notation of Sets
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The Language and Notation of Sets

Definitions

• A set is a well defined collection of objects, and 
classified that set into smaller groups (subsets) having 
certain common features. In general, a subset is a set 
that is part of some other set.

• We speak of individual objects in a given set as 
members or elements of the set. The symbol ∈
means “is a member of.”

• The symbol ∉ means “is not a member of.” For 
example, if E is the set of even numbers, then 4 ∈ E 
but 3 ∉ E.
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The Language and Notation of Sets

Describing sets

There are three different ways to describe sets:

1. We can use words.

2. We can make a list.

3. We can use set-builder notation.
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The Language and Notation of Sets

Describing sets:  Using words and lists

The first set of numbers that young children learn is called the set 
of natural numbers.

N is the set of natural numbers or counting numbers. (words)

N = {1, 2, 3, . . .} (list)

We use braces to indicate a set. The three dots are referred to as 
an ellipsis and are used to indicate that the established pattern 
continues indefinitely.
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The Language and Notation of Sets

Describing sets:  Using words and lists

At some point, children realize that zero is also a number, and this 
leads to the next set: the set of whole numbers (W), which we can 
describe with words or with a list:

W is the set of natural numbers and zero. (words)

W = {0, 1, 2, 3, . . .} (list)
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The Language and Notation of Sets

Describing sets:  Using words and lists

Later, children become aware of negative numbers, so we have the 
set of integers (I):

I = {. . . –3, –2, –1, 0, 1, 2, 3, . . .}
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The Language and Notation of Sets

Describing sets:  Using words and lists

Another important set is the set of rational numbers (Q), which we 
can describe in words:

Q is the set of all numbers that can be represented as the ratio of 
two integers as long as the denominator is not zero.
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The Language and Notation of Sets

Describing sets:  Using set-builder notation

Another way to express a set, such as the set of rational numbers, 
Q, is using set-builder notation.

This statement is read in English as, “Q is the set of all numbers of 
the form    such that a and b are both integers, but b is not equal to 
zero.”

Set-builder notation always takes the form 
{x|x has a certain property}.
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The Language and Notation of Sets
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The Language and Notation of Sets

Types of Sets:  Finite and Infinite Sets

If the number of elements in a set is a whole number, that set is 
said to be finite.

An infinite set has an unlimited number of members.
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The Language and Notation of Sets

Types of Sets:  Finite and Infinite Sets

Consider the following infinite set. Does each way of describing the 
set make sense?

Verbal description E is the set of positive even numbers.

List E = {2, 4, 6, 8, . . .}

Set-builder notation E = {x | x = 2n, n ∈ N}
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The Language and Notation of Sets

Types of Sets:  Subsets

A set X is a subset of a set Y if and only if every member of X is also 
a member of Y.

The symbol ⊆ means “is a subset of.”

Thus we say X ⊆ Y.

On the other hand, if a set X is not a subset of a set Y, we say 
X ⊄ Y.
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The Language and Notation of Sets

Types of Sets:  Subsets

There is another symbol that we can use when talking about 
subsets. This symbol (⊂) is used when we want to emphasize that 
the subset is a proper subset.

A subset X is a proper subset of set Y if, and only if, the two sets are 
not equal and every member of X is also a member of Y.

In the case of finite sets, this means that the proper subset has 
fewer elements than the given set. 
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The Language and Notation of Sets
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The Language and Notation of Sets

Types of Sets:  Empty Set

We use the terms empty set and null set interchangeably to mean 
the set with no elements.

The following symbol is used to represent a set that is empty:

Using brackets, we would write {     }.

In investigation 2.1c, the subset “plain pizza” is an empty set. 
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The Language and Notation of Sets

Types of Sets

Two mathematical statements worth noting:

• Every set is a subset of itself.

• The empty set is a subset of every set.
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The Language and Notation of Sets

Types of Sets:  Equal and Equivalent Sets

Two sets are said to be equal if they contain the same elements. For 
example, {1, 2, 3, 4, 5} = {5, 4, 3, 2, 1}.

Two sets are said to be equivalent if they have the same number of 
elements. More precisely, two sets are equivalent if their elements 
can be placed in a one-to-one correspondence. In such a 
correspondence, an element of either set if paired exactly with one 
element in the other set. We use the symbol ~ to designate set 
equivalence. For example, 

{United States, Canada, Mexico} ~ {1, 2, 3}.
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Venn Diagrams
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Venn Diagrams

One way to represent sets is to use Venn diagrams, which are 
named after John Venn.

An elementary teacher explained how she had used the Venn 
diagram below to help her students understand the similarities 
and differences between butterflies and moths.
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Venn Diagrams

In this Venn Diagram, one region represents the set of moths’ 
characteristics, another region represents the set of butterflies’ 
characteristics, and the overlapping region represents the set of 
characteristics common to both.
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Operations on Sets

We will use Venn diagrams as we examine three operations on 
sets: intersection, union, and complement.

When we perform operations on sets of objects, it is often useful 
to refer to the set that consists of all the elements being 
considered as the universal set, or the universe, and to symbolize 
it as U.

We represent U in the Venn diagram with a rectangle.
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Operations on Sets

In the following discussions, we will let U be the set of students in 
a small class.

U = {Amy, Uri, Tia, Eli, Pam, Sue, Tom, Riki}

We begin with two subsets of U:

B = {students who have at least one brother}

S = {students who have at least one sister}

We represent U in the Venn diagram with a rectangle.
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Operations on Sets

The figure below represents the students in this hypothetical class.

We can group this class of eight students into various subsets.

How would you describe the subset consisting of Tom and Uri?
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Operations on Sets

Intersection

One way to describe this subset is, “Those students who have at 
least one brother and at least one sister.”

Mathematically, we call this subset the intersection of sets B and S. 
In mathematical language, we say that the intersection of two sets 
B and S consists of the set of all elements common to both B and S.

We represent the intersection of B and S
by shading it.
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Operations on Sets

Intersection

Using set-builder notation, we write B ∩ S = {x | x ∈ B and x ∈ S}

The symbol ∩ is used to denote “intersection.”

Connecting the concept of intersection to previous notation, we 
can say Tom ∈ B ∩ S, and we can say (B ∩ S) ⊂ U.

Copyright © Cengage Learning. All rights reserved. 



Operations on Sets

Let us examine another subset of the class:

{Tia, Amy, Pam, Eli, Tom, Uri, Riki}.

How would you describe this subset in everyday English?
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Operations on Sets

There are actually several ways to describe this subset:

• Those students who have at least one brother or sister.

• Those students who have at least one sibling.

• Those students who are not an only child.
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Operations on Sets

Union

Mathematically, we describe this subset as the union of sets B and S.

In mathematical language, we say that the union of two sets B and S 
consists of the set of all elements that are in set B or in set S or in 
both sets B and S.

We represent the union of B and S by
shading it.
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Operations on Sets

Union

Symbolically, we write B ∪ S = {x| x ∈ B and/or x ∈ S}

The symbol ∪ is used to denote “union.”

Connecting the concept of union to previous notation, we can say 
Tom ∈ B ∪ S, and we can also say B ⊂ (B ∪ S).
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Operations on Sets

Let us examine another subset of the class. Consider this subset of 
the class: 

{Tia, Amy, Pam, Eli, Sue}.

One way to describe this subset is, “Those students who have no 
sisters.”
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Operations on Sets

Complement
We describe this subset as the complement of set S. In 
mathematical language, the complement of set S consists of the set 
of all elements in U that are not in S.

We represent the complement of S by shading it.

In symbols, we write S = {x | x ∉ S}. We represent the complement 
of a set by placing a line over the set’s letter.
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Operations on Sets

Complement

Some people understand complement better if they think of the 
complement of S as “not S”—that is, all elements that are not in set S.
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Operations on Sets

Subtraction

Subtraction Just as we have the operation of subtraction on whole 
numbers, we have the operation of subtraction on sets. Thinking of 
what subtraction means, what elements do you predict would be in 
B – S?
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Operations on Sets

Subtraction

Verbally, we define set difference as the set of all elements that are in 
B that are not in S.

We represent B – S by shading it as shown below.

Symbolically, we write B – S = {x| x ∈ B and x ∉ S}
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Relationships between Sets

Disjoint

When we are considering two sets, there are three ways in which 
they might be related.

1. They can have nothing in common. In this case, we call  
them disjoint sets, as shown below.
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Relationships between Sets

Disjoint

The set of odd and even numbers are disjoint.

O = {1, 3, 5, 7, …}

E = {0, 2, 4, 6, …}
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Relationships between Sets

2. They can have some elements in common (Figure 2.8).
Multiples of 2 and 3 have some elements in common.

A = {2, 4, 6, 8, 10, 12, ...}

B = {3, 6, 9, 12, 15, ...}
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Relationships between Sets

3. One set can be a subset of the other, as shown below.

The multiples of 4 are a subset of the multiples of 2.

A = {2, 4, 6, 8, 10, 12, ...}

C = {4, 8, 12, ...}
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Relationships between Sets
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