Managerial Accounting 14th Edition Garrison Test Bank

Full Download: http://alibabadownload.com/product/managerial-accounting-14th-edition-garrison-test-bank/

Chapter 02 - Appendix A Least-Squares Regression Computations

			Difficulty	LO1: DM, DL, Manuf. overhead	LO2: Period and product costs	-O3: Variable, fixed, and mixed costs	LO4: High-low method	LO5: Income statement formats	LO6: Direct and indirect costs	7: Decision-making cost classifications	08: Least squares regression (App 2A)	Professional Exam Adapted			
		Question Type								2	Ľ		חו	Origin	CMA/CPA
	1	T/F	F								Y		New 6/27/97 F	E N	ongin
	2	T/F	F								x		3/14/2010 M1	E.N.	
	3	T/F	н								x		3/14/2010 N/2	E.N.	
	U	Conceptual	•••								~		0/14/2010 142	David	
	4	M/C	Е				х				х		8/e:ATB6-29	Keyes	
		Conceptual											3-17-2010 Conceptual	,	
	5	M/Ċ	М								Х		A	E.N.	
													8/22/2004 Single MC		
	6	M/C	Н								Х		H4	E.N.	
	_	/ .											8/22/2004 Single MC		
	7	M/C	н								Х		G4	E.N.	
	8	M/C	Н								Х		New,6/28/97,A9	E.N.	
2A-	9-														
1	10	Multipart M/C	M								Х		8/21/2004 Multi MC G4	E.N.	
2A-	11-	Multinert M/C	ы										7/0: 6 EQ to 60	Authoro	
∠ 2∆-	1∠ 13-	wullipart w/C	п								X		7/8. 6-39 10 60	Authors	
<u>∠</u> ∩- 3	14	Multipart M/C	М								x		8/21/2004 Multi MC 14	FN	
2A-	15-	manipurt m/O	1 1 1								~		0,21,2004 Mail MO I4	L.1.4.	
4	16	Multipart M/C	М								х		8/21/2004 Multi MC H4	E.N.	
	17	Problem	н				x				x		LD9e:CH05P2	Larry	

2A-1

This sample only, Download all chapters at: alibabadownload.com

						Deppe
18	Problem	Н		х	8/22/2004 Problem J4	E.N.
19	Problem	Н		х	New,6/29/97,A9	E.N.
20	Problem	Н	х	х	6/e:5-62	Authors
21	Problem	Н		х	8/21/2004 Problem H4	E.N.
22	Problem	Н		х	8/21/2004 Problem 14	E.N.

Chapter 02 Appendix A Least-Squares Regression Computations

True / False Questions

1. In least-squares regression, independent variables are not included in the computations of the slope and intercept.

True False

2. Least-squares regression selects the values for the intercept and slope of a straight line that minimize the sum of the squared errors. True False

3. When analyzing a mixed cost, you should always plot the data in a scattergraph, but it is particularly important to check the data visually on a scattergraph when the R2 is very high. True False

Multiple Choice Questions

4. Which of the following methods of analyzing mixed costs can be used to estimate an equation for the mixed cost?

	High-Low	Least-Squares
A)	Yes	Yes
B)	Yes	No
C)	No	Yes
D)	No	No
A. Opt	ion A	
B. Opt	ion B	
C. Opt	ion C	
D. Opt	ion D	

- 5. The least-squares regression method:
- A. fits a line to data by minimizing the sum of the squared errors from the line.
- B. is generally less accurate than the high-low method.
- C. can be used only if the fixed cost element is larger than the variable cost element.
- D. can be used only if the fixed cost element is smaller than the variable cost element.

6. The management of Ferry Corporation would like for you to analyze their repair costs, which are listed below:

	Machine-Hours	Repair Costs
February	2,131	\$33,085
March	2,160	\$33,103
April	2,117	\$33,070
May	2,180	\$33,137
June	2,102	\$33,013
July	2,196	\$33,167
August	2,128	\$33,054
September	2,191	\$33,140

Management believes that repair cost is a mixed cost that depends on the number of machinehours. Using the least-squares regression method, the estimates of the variable and fixed components of repair cost would be closest to:

A. \$1.64 per machine-hour plus \$29,566 per month

B. \$0.92 per machine-hour plus \$31,132 per month

C. \$1.37 per machine-hour plus \$30,157 per month

D. \$15.39 per machine-hour plus \$33,096 per month

	Units Produced	Inspection Costs
March	125	\$9,079
April	152	\$10,473
May	121	\$8,884
June	175	\$11,689
July	191	\$12,507
August	180	\$11,939
September	182	\$12,055
October	177	\$11,795

7. Moeller Inc.'s inspection costs are listed below:

Management believes that inspection cost is a mixed cost that depends on the number of units produced. Using the least-squares regression method, the estimates of the variable and fixed components of inspection cost would be closest to:

A. \$51.76 per unit plus \$2,621 per month

B. \$51.99 per unit plus \$2,584 per month

C. \$67.86 per unit plus \$11,053 per month

D. \$52.23 per unit plus \$2,550 per month

8. Your boss would like you to estimate the fixed and variable components of a particular cost. Actual data for this cost over four recent periods appear below.

	Activity	Cost
Period 1	24	\$378
Period 2	23	\$367
Period 3	20	\$342
Period 4	25	\$386

Using the least-squares regression method, what is the cost formula for this cost?

A. Y = \$156.64 + \$9.20X B. Y = \$0.00 + \$16.01X C. Y = \$164.54 + \$8.86X D. Y = \$169.97 + \$6.10X

	Units Produced	Inspection Costs
February	415	\$6,100
March	365	\$5,624
April	434	\$6,315
May	449	\$6,453
June	391	\$5,874
July	366	\$5,627
August	441	\$6,380
September	392	\$5,887

Descoteaux Inc.'s inspection costs are listed below:

Management believes that inspection cost is a mixed cost that depends on units produced.

9. Using the least-squares regression method, the estimate of the variable component of inspection cost per unit produced is closest to:

- A. \$9.87
- **B.** \$14.84
- C. \$9.26
- D. \$9.97

10. Using the least-squares regression method, the estimate of the fixed component of inspection cost per month is closest to:

- A. \$1,979
- B. \$6,033
- C. \$5,624
- D. \$2,021

Carr Company reports the following data for the first six months of the year:

Month	Machine Hours	Electrical Cost
January	400	\$40
February	300	\$30
March	400	\$50
April	300	\$40
May	200	\$30
June	200	\$20

11. Using the least-squares regression method, the estimated variable electrical cost per machine hour is closest to:

A. \$0.91

B. \$0.10

C. \$0.20

D. \$0.25

12. Using the least-squares regression method, the estimated monthly fixed component of the electrical cost is closest to:

A. \$5

B. \$20

C. \$6

D. \$10

Gelrud Corporation's recent utility costs are listed below:

	Machine-Hours	Utility Costs
March	2,443	\$19,941
April	2,419	\$19,804
May	2,483	\$20,161
June	2,424	\$19,801
July	2,475	\$20,127
August	2,409	\$19,733
September	2,453	\$19,983
October	2,480	\$20,147

Management believes that utility cost is a mixed cost that depends on machine-hours.

13. Using the least-squares regression method, the estimate of the variable component of utility cost per machine-hour is closest to:

- A. \$8.15
- B. \$5.78
- C. \$5.57
- D. \$5.85

14. Using the least-squares regression method, the estimate of the fixed component of utility cost per month is closest to:

- A. \$19,733
- B. \$5,809
- C. \$19,962
- D. \$5,628

	Machine-Hours	Maintenance Costs
February	632	\$8,774
March	587	\$8,334
April	666	\$9,093
May	620	\$8,667
June	580	\$8,275
July	575	\$8,241
August	617	\$8,650
September	588	\$8,368

Recent maintenance costs of Prideaux Corporation are listed below:

Management believes that maintenance cost is a mixed cost that depends on machine-hours.

15. Using the least-squares regression method, the estimate of the variable component of maintenance cost per machine-hour is closest to:

- A. \$9.36
- B. \$9.49
- C. \$14.06
- D. \$9.23

16. Using the least-squares regression method, the estimate of the fixed component of maintenance cost per month is closest to:

- A. \$2,859
- B. \$8,241
- C. \$8,550
- D. \$2,782

Essay Questions

17. The Stephens Leadership Center provides training seminars in personal development and time management. The company is relatively new and management is seeking information regarding the Center's cost structure. The following information has been gathered since the inception of the business in January of the current year:

Month	Seminars Offered	Costs Incurred
January	10	\$17,000
February	12	\$18,800
March	15	\$20,900
April	18	\$23,762
May	16	\$21,800
June	13	\$19,400

Required:

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.

b. Using the least-squares method, estimate the variable cost per seminar and the total fixed cost per month.

	Titles Printed	Press Setup Cost
February	33	\$3,170
March	34	\$3,203
April	46	\$3,688
May	28	\$2,996
June	44	\$3,607
July	42	\$3,551
August	43	\$3,586
September	39	\$3,413

18. Dillenbeck Printing Corp., a book printer, has provided the following data:

Management believes that the press setup cost is a mixed cost that depends on the number of titles printed. (A specific book that is to be printed is called a "title". Typically, thousands of copies will be printed of each title. Specific steps must be taken to setup the presses for printing each title-for example, changing the printing plates. The costs of these steps are the press setup costs.)

Required:

Estimate the variable cost per title printed and the fixed cost per month using the least-squares regression method.

19. Below are cost and activity data for a particular cost over the last four periods. Your boss has asked you to analyze this cost so that management will have a better understanding of how this cost changes in response to changes in activity.

	Activity	Cost
Period 1	46	\$292
Period 2	40	\$271
Period 3	42	\$279
Period 4	41	\$267

Required:

Using the least-squares regression method, estimate the cost formula for this cost.

20. Executive Training, Inc., provides a personal development seminar that is popular with many companies. The number of seminars offered over the last five months, along with the total costs of offering these seminars, follows:

	Seminars Offered	Costs Incurred
April	55	\$15,400
May	45	\$14,000
June	60	\$18,000
July	50	\$14,700
August	75	\$19,000

Required:

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.

b. Using the least-squares regression method, compute the variable cost per seminar and the total fixed cost per month. (Round off to the nearest whole dollar.)

21. Galarneau Inc. maintains a call center to take orders, answer questions, and handle complaints. The costs of the call center for a number of recent months are listed below:

	Calls Taken	Call Center Cost
February	7,851	\$85,115
March	7,820	\$84,934
April	7,861	\$85,178
May	7,860	\$85,161
June	7,825	\$84,965
July	7,836	\$85,009
August	7,879	\$85,262
September	7,866	\$85,201

Management believes that the cost of the call center is a mixed cost that depends on the number of calls taken.

Required:

Estimate the variable cost per call and fixed cost per month using the least-squares regression method.

22. The management of Ferriman Corporation would like to better understand the behavior of the company's warranty costs. Those costs are listed below for a number of recent months:

	Product Returns	Warranty Cost
April	24	\$2,972
May	23	\$2,928
June	27	\$3,141
July	39	\$3,752
August	36	\$3,569
September	35	\$3,551
October	26	\$3,071
November	37	\$3,636

Management believes that warranty cost is a mixed cost that depends on the number of product returns.

Required:

Estimate the variable cost per product return and the fixed cost per month using the least-squares regression method.

Chapter 02 Appendix A Least-Squares Regression Computations Answer Key

True / False Questions

1. In least-squares regression, independent variables are not included in the computations of the slope and intercept. **FALSE**

AACSB: Reflective Thinking AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Knowledge Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Easy

2. Least-squares regression selects the values for the intercept and slope of a straight line that minimize the sum of the squared errors. **TRUE**

AACSB: Reflective Thinking AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Knowledge Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Easy

3. When analyzing a mixed cost, you should always plot the data in a scattergraph, but it is particularly important to check the data visually on a scattergraph when the R2 is very high. **FALSE**

Multiple Choice Questions

4. Which of the following methods of analyzing mixed costs can be used to estimate an equation for the mixed cost?

	High-Low	Least-Squares
A)	Yes	Yes
B)	Yes	No
C)	No	Yes
D)	No	No
<u>A.</u> Opt	ion A	
B. Opt	ion B	
C. Opt	ion C	
D. Opt	ion D	

AACSB: Reflective Thinking AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Knowledge Learning Objective: 02A-04 Analyze a mixed cost using a scattergraph plot and the high-low method Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Easy

5. The least-squares regression method:

A. fits a line to data by minimizing the sum of the squared errors from the line.

B. is generally less accurate than the high-low method.

C. can be used only if the fixed cost element is larger than the variable cost element.

D. can be used only if the fixed cost element is smaller than the variable cost element.

AACSB: Reflective Thinking AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Comprehension Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Medium 6. The management of Ferry Corporation would like for you to analyze their repair costs, which are listed below:

	Machine-Hours	Repair Costs
February	2,131	\$33,085
March	2,160	\$33,103
April	2,117	\$33,070
May	2,180	\$33,137
June	2,102	\$33,013
July	2,196	\$33,167
August	2,128	\$33,054
September	2,191	\$33,140

Management believes that repair cost is a mixed cost that depends on the number of machinehours. Using the least-squares regression method, the estimates of the variable and fixed components of repair cost would be closest to:

A. \$1.64 per machine-hour plus \$29,566 per month

B. \$0.92 per machine-hour plus \$31,132 per month

C. \$1.37 per machine-hour plus \$30,157 per month

D. \$15.39 per machine-hour plus \$33,096 per month

Using Microsoft Excel, the solution is:

Intercept	\$30,157	Fixed cost
Slope	\$1.37	Variable cost
RSQ	0.93	

	Units Produced	Inspection Costs
March	125	\$9,079
April	152	\$10,473
May	121	\$8,884
June	175	\$11,689
July	191	\$12,507
August	180	\$11,939
September	182	\$12,055
October	177	\$11,795

7. Moeller Inc.'s inspection costs are listed below:

Management believes that inspection cost is a mixed cost that depends on the number of units produced. Using the least-squares regression method, the estimates of the variable and fixed components of inspection cost would be closest to:

A. \$51.76 per unit plus \$2,621 per month

B. \$51.99 per unit plus \$2,584 per month

 \overline{C} . \$67.86 per unit plus \$11,053 per month

D. \$52.23 per unit plus \$2,550 per month

Using Microsoft Excel, the solution is:

Intercept	\$2,584	Fixed cost
Slope	\$51.99	Variable cost
RSQ	1.00	

8. Your boss would like you to estimate the fixed and variable components of a particular cost. Actual data for this cost over four recent periods appear below.

	Activity	Cost
Period 1	24	\$378
Period 2	23	\$367
Period 3	20	\$342
Period 4	25	\$386

Using the least-squares regression method, what is the cost formula for this cost? A. Y = \$156.64 + \$9.20XB. Y = \$0.00 + \$16.01XC. Y = \$164.54 + \$8.86XD. Y = \$169.97 + \$6.10X

Using Microsoft Excel, the slope and intercept are:

Intercept	\$164.54
Slope	\$8.86
RSQ	1.00

Therefore, the cost formula is \$164.54 per activity plus \$8.86 per unit or: Y = \$164.54 + \$8.86X

	Units Produced	Inspection Costs
February	415	\$6,100
March	365	\$5,624
April	434	\$6,315
May	449	\$6,453
June	391	\$5,874
July	366	\$5,627
August	441	\$6,380
September	392	\$5,887

Descoteaux Inc.'s inspection costs are listed below:

Management believes that inspection cost is a mixed cost that depends on units produced.

9. Using the least-squares regression method, the estimate of the variable component of inspection cost per unit produced is closest to:

A. \$9.87

B. \$14.84

C. \$9.26

<u>**D.**</u> \$9.97

Using Microsoft Excel functions, the solution is: Variable cost per unit produced = Slope = \$9.97

10. Using the least-squares regression method, the estimate of the fixed component of inspection cost per month is closest to:

<u>A.</u> \$1,979

B. \$6,033

C. \$5,624

D. \$2,021

Using Microsoft Excel functions, the solution is: Fixed cost per month = Intercept = \$1,979

AACSB: Analytic AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Application Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Medium

Carr Company reports the following data for the first six months of the year:

Month	Machine Hours	Electrical Cost
January	400	\$40
February	300	\$30
March	400	\$50
April	300	\$40
May	200	\$30
June	200	\$20

11. Using the least-squares regression method, the estimated variable electrical cost per machine hour is closest to:

A. \$0.91

<u>**B.**</u> \$0.10

C. \$0.20

D. \$0.25

Using Microsoft Excel functions, the solution is: Variable electrical cost per machine hour = Slope = \$0.10

AACSB: Analytic AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Application Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard

12. Using the least-squares regression method, the estimated monthly fixed component of the electrical cost is closest to:

<u>A.</u> \$5

B. \$20

C. \$6

D. \$10

Using Microsoft Excel functions, the solution is: Fixed electrical cost per month = Intercept = \$5.00

	Machine-Hours	Utility Costs
March	2,443	\$19,941
April	2,419	\$19,804
May	2,483	\$20,161
June	2,424	\$19,801
July	2,475	\$20,127
August	2,409	\$19,733
September	2,453	\$19,983
October	2,480	\$20,147

Gelrud Corporation's recent utility costs are listed below:

Management believes that utility cost is a mixed cost that depends on machine-hours.

13. Using the least-squares regression method, the estimate of the variable component of utility cost per machine-hour is closest to:

A. \$8.15 B. \$5.78

C. \$5.57

<u>D.</u> \$5.85

Using Microsoft Excel functions, the solution is: Utility cost per machine-hour = Slope = \$5.85

14. Using the least-squares regression method, the estimate of the fixed component of utility cost per month is closest to:

A. \$19,733 B. \$5,809 C. \$19,962

<u>D.</u> \$5,628

Using Microsoft Excel functions, the solution is: Fixed utility cost per month = Intercept = \$5,628

AACSB: Analytic AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Application Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Medium

Recent maintenance costs of Prideaux Corporation are listed below:

	Machine-Hours	Maintenance Costs
February	632	\$8,774
March	587	\$8,334
April	666	\$9,093
M ay	620	\$8,667
June	580	\$8,275
July	575	\$8,241
August	617	\$8,650
September	588	\$8,368

Management believes that maintenance cost is a mixed cost that depends on machine-hours.

15. Using the least-squares regression method, the estimate of the variable component of maintenance cost per machine-hour is closest to:

A. \$9.36

<u>**B.**</u> \$9.49

C. \$14.06

D. \$9.23

Using Microsoft Excel functions, the solution is: Maintenance cost per machine-hour = Slope = \$9.49

AACSB: Analytic AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Application Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Medium

16. Using the least-squares regression method, the estimate of the fixed component of maintenance cost per month is closest to:

A. \$2,859

B. \$8,241

C. \$8,550

D. \$2,782

Using Microsoft Excel functions, the solution is: Fixed maintenance cost per month = Intercept = \$2,782

Essay Questions

17. The Stephens Leadership Center provides training seminars in personal development and time management. The company is relatively new and management is seeking information regarding the Center's cost structure. The following information has been gathered since the inception of the business in January of the current year:

Month	Seminars Offered	Costs Incurred
January	10	\$17,000
February	12	\$18,800
March	15	\$20,900
April	18	\$23,762
May	16	\$21,800
June	13	\$19,400

Required:

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.

b. Using the least-squares method, estimate the variable cost per seminar and the total fixed cost per month.

a. High-Low Method:

Month	Number of Seminars	Costs Incurred
April (high activity level)	18	\$23,762
January (low activity level)	<u>10</u>	17,000
Change observed	<u>_8</u>	<u>\$6,762</u>

Variable cost = Change in Cost/Change in activity = \$6,762/8 seminars = \$845.25 per seminar

Fixed cost element = Total cost - Variable cost element = \$23,762 - (\$845.25 per seminar × 18 seminars) = \$8,547.50

Cost formula for seminar costs: \$8,547.50 per month plus \$845.25 per seminar held

b. Least-Squares Method: n = 6 sumX = 84 sumY = 121,662 sumXY = 1,737,816 sumX^2 = 1,218

 $b = [n(sumXY)-(sumX)(sumY)]/[n(sumX^2)-(sumX)^2]$ = [6(1,737,816)-(84)(121,662)]/[6(1,218)-(84)^2] = \$822.57 (rounded to the nearest whole cent)

a = [(sumY)-b(sumX)]/n = [(121,662)-822.57(84)]/6 = \$8,761 (rounded to the nearest whole dollar)

The cost formula is \$8,761 per month plus \$822.57 per seminar. A similar answer can be obtained using Microsoft Excel.

AACSB: Analytic AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Application Learning Objective: 02A-04 Analyze a mixed cost using a scattergraph plot and the high-low method Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard

	Titles Printed	Press Setup Cost
February	33	\$3,170
March	34	\$3,203
April	46	\$3,688
May	28	\$2,996
June	44	\$3,607
July	42	\$3,551
August	43	\$3,586
September	39	\$3,413

18. Dillenbeck Printing Corp., a book printer, has provided the following data:

Management believes that the press setup cost is a mixed cost that depends on the number of titles printed. (A specific book that is to be printed is called a "title". Typically, thousands of copies will be printed of each title. Specific steps must be taken to setup the presses for printing each title-for example, changing the printing plates. The costs of these steps are the press setup costs.)

Required:

Estimate the variable cost per title printed and the fixed cost per month using the least-squares regression method.

The solution using Microsoft Excel functions is: Variable cost per title printed = Slope = \$39.53Fixed cost per month = Intercept = \$1,875

The solution using the formulas in the text is: n = 8 sumX = 309 sumY = \$27,214 sumXY = \$1,062,203 sumX2 = 12,215 $b = [n(sumXY) - (sumX)(sumY))]/[n(sumX^2) - (sumX)^2]$ $= [8($1,062,203) - (309)($27,214))]/[8(12,215) - (309)^2]$ = \$39.53 a = [(sumY) - b(sumX)]/n = [(\$27,214) - \$39.53(309)]/8= \$1,875

Any difference in the solutions is due to rounding errors when the formulas are used.

Chapter 02 - Appendix A Least-Squares Regression Computations

19. Below are cost and activity data for a particular cost over the last four periods. Your boss has asked you to analyze this cost so that management will have a better understanding of how this cost changes in response to changes in activity.

	Activity	Cost
Period 1	46	\$292
Period 2	40	\$271
Period 3	42	\$279
Period 4	41	\$267

Required:

Using the least-squares regression method, estimate the cost formula for this cost.

The solution using Microsoft Excel functions is: Variable cost = Slope = \$3.94Fixed cost = Intercept = \$110.80Therefore, the cost formula is \$110.80 per period plus \$3.94 per unit of activity or: Y = \$110.80 + \$3.94X

The solution using the formulas in the text is:

n = 4 sumX = 169 sumY = 1,109 sumXY = 46,937 sumX^2 = 7,161

 $b = [n(sumXY)-(sumX)(sumY)]/[n(sumX^2)-(sumX)^2]$ = [4(46,937)-(169)(1,109)]/[4(7,161)-(169)^2] = \$3.94 (rounded to nearest whole cent)

a = [(sumY)-b(sumX)]/n = [(1,109)-3.94(169)]/4 = \$111 (rounded to nearest whole dollar)

Cost formula: Y = \$111 + \$3.94X.

20. Executive Training, Inc., provides a personal development seminar that is popular with many companies. The number of seminars offered over the last five months, along with the total costs of offering these seminars, follows:

	Seminars Offered	Costs Incurred
April	55	\$15,400
May	45	\$14,000
June	60	\$18,000
July	50	\$14,700
August	75	\$19,000

Required:

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.

b. Using the least-squares regression method, compute the variable cost per seminar and the total fixed cost per month. (Round off to the nearest whole dollar.)

a. Using the high-low method, estimate the variable cost per seminar and the total fixed cost per month.

	Cost	Activity
High level of activity	\$19,000	75
Low level of activity	14,000	45
Difference	\$ 5,000	30

Variable $cost = Change in cost \div Change in activity$ = $$5,000 \div 30 seminars = $166.67 per seminar$

Fixed cost = Total cost - Variable cost = \$19,000 - (\$166.67 per seminar × 75 seminars) = \$19,000 - \$12,500 = \$6,500

b. Using Microsoft Excel functions, the estimates are: Variable cost per seminar = Slope = \$177.92 Total fixed cost per month = Intercept = \$6,078.30

Using the formulas in the text, the solution is: n=5 sumX=285 sumY=\$81,100 sumXY=\$4,717,000 sumX^2=16,775

Least squares formulas: $b = [n(sumXY) - (sumX)(sumY)] \div [n(sumX^2) - (sumX)^2]$ $= [5(4,717,000) - (285)(81,100)] \div [5(16,775) - (285)^2]$ = \$178 per seminar $a = [(sumY) - b(sumX)] \div n$ $= [(81,100) - 178(285)] \div 5$ = \$6,074 per month

The two solutions differ due to rounding error.

AACSB: Analytic AICPA BB: Critical Thinking AICPA FN: Measurement Bloom's: Application Learning Objective: 02A-04 Analyze a mixed cost using a scattergraph plot and the high-low method Learning Objective: 02A-08 Analyze a mixed cost using a scattergraph plot and the least-squares regression method Level: Hard 21. Galarneau Inc. maintains a call center to take orders, answer questions, and handle complaints. The costs of the call center for a number of recent months are listed below:

	Calls Taken	Call Center Cost
February	7,851	\$85,115
March	7,820	\$84,934
April	7,861	\$85,178
May	7,860	\$85,161
June	7,825	\$84,965
July	7,836	\$85,009
August	7,879	\$85,262
September	7,866	\$85,201

Management believes that the cost of the call center is a mixed cost that depends on the number of calls taken.

Required:

Estimate the variable cost per call and fixed cost per month using the least-squares regression method.

Using Microsoft Excel functions, the solution is: Variable cost per call = Slope = \$5.74 Fixed cost per month = Intercept = \$40,083

Managerial Accounting 14th Edition Garrison Test Bank

Full Download: http://alibabadownload.com/product/managerial-accounting-14th-edition-garrison-test-bank/

Chapter 02 - Appendix A Least-Squares Regression Computations

22. The management of Ferriman Corporation would like to better understand the behavior of the company's warranty costs. Those costs are listed below for a number of recent months:

	Product Returns	Warranty Cost
April	24	\$2,972
May	23	\$2,928
June	27	\$3,141
July	39	\$3,752
August	36	\$3,569
September	35	\$3,551
October	26	\$3,071
November	37	\$3,636

Management believes that warranty cost is a mixed cost that depends on the number of product returns.

Required:

Estimate the variable cost per product return and the fixed cost per month using the least-squares regression method.

The solution using Microsoft Excel functions is: Variable cost per product return = Slope = \$51.08Fixed cost per month = Intercept = \$1,750

The solution using the formulas in the text is: n = 8 sumX = 247 sumY = \$26,620 sumXY = \$836,954 sumX2 = 7,921 $b = [n(sumXY) - (sumX)(sumY))]/[n(sumX^2) - (sumX)^2]$ $= [8($836,954) - (247)($26,620))]/[8(7,921) - (247)^2]$ = \$51.08

a = [(sumY) - b(sumX)]/n = [(\$26,620) - \$51.08(247)]/8 = \$1,750