
Chapter 2

Euclidean Space

2.1 Practice Problems

1. u−w =
−4
3
4

−
5
0

−2
=

−4− 5
3− 0

4− (−2)
=

−9
3
6

v + 3w =

[ −1
6
2

]
+ 3

[
5
0

−2

]
=

[ −1 + 3 (5)
6 + 3 (0)

2 + 3 (−2)

]
=

[
14
6

−4

]

−2w + u+ 3v = −2

[
5
0

−2

]
+

[ −4
3
4

]
+ 3

[ −1
6
2

]
=

[ −2 (5) + (−4) + 3 (−1)
−2 (0) + 3 + 3 (6)

−2 (−2) + 4 + 3 (2)

]
=

[ −17
21
14

]

[ ] [ ] [ ] [ ]

2. (a) −x1 + 4x2 = 3
7x1 + 6x2 = 10
2x1 26x = 5−

(b) 3x1 − x3 = 4
4x1 − 2x2 + 2x3 = 7

− 5x2 + 9x3 = 11
2x1 + 6x2 + 5x3 = 6−

3. (a) x1

[
1

−5
4

]
+ x2

[
1
7
0

]
+ x3

[ −2
6

−8

]
=

[
3
12
0

]

(b) x1

[
4
0
3

]
+ x2

[ −3
2
12

]
+ x3

[ −1
5
6

]
+ x4

[
5

−2
0

]
=

[
0
6
10

]

4. (a)

[
x1

x2

x3

]
=

[
5
7
0

]
+ s1

[
3

−2
1

]

(b)

 x1

x2

x3

x4


=

 1
0
17
0


+ s1

 2
0
1
1


+ s2

 13
1
0
0

       
5. (a) x1a1 + x2a2 = b ⇔ x1

[
1

−5

]
+ x2

[
3
6

]
=

[
5
9

]
⇔

[
x1 + 3x2

−5x1 + 6x2

]
=

[
5
9

]
⇔
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[ ]
1 3 5

the augmented matrix has a solution:−5 6 9[
1 3 5

−5 6 9

]
5R1+R2→R2∼

[
1 3 5
0 21 34

]
From row 2, 21x2 = 34 ⇒ x2 = 34 . From row 1, x1 + 3( 34 ) = 5 ⇒ x 1

1 = . Thus, b is a linear21 21 7

combination of a1 and a2, with b =1a1 +
34a2.7 21

(b) x1a1 + x2a2 + x2a2 = b ⇔ x1

[
1

−3
8

]
+ x2

[ −2
3

−3

]
=

[
7
5

−4

]
⇔[

x1 − 2x2

−3x1 + 3x2

8x1 − 3x2

]
=

[
7
5

−4

]
⇔ the augmented matrix

[
1 −2 7

−3 3 5
8 −3 −4

]
yields a solution.

[
1 −2 7

−3 3 5
8 −3 −4

] 3R1+R2→R2

−8R1+R3→R3∼

[
1 −2 7
0 −3 26
0 13 −60

]

( 13
3 )R2+R3→R3

∼


1 −2 7
0 −3 26
0 0 158

3

 
From the third equation, we have 0 = 158 , and thus the system does not have a solution. Thus,3
b is not a linear combination of a1, a2, and a3.

6. (a) False. Addition of vectors is associative and commutative.

(b) True. The scalars may be any real number.

(c) True. The solutions to a linear system with variables x1, . . . , xn can be expressed as a vector x,
which is the sum of a fixed vector with n components and a linear combination of k vectors with
n components, where k is the number of free variables.

(d) False. The Parallelogram Rule gives a geometric interpretation of vector addition.

2.1 Vectors

1. u− v =
3

−2
0

−
−4
1
5

=
3− (−4)
−2− 1
0− 5

=
7

−3
−5

;

6w = 6

[
2

−7
−1

]
=

[
(6) 2

(6) (−7)
(6) (−1)

]
=

[
12

−42
−6

]
[ ] [ ] [ ] [ ]

2. w − u =

[
2

−7
−1

]
−

[
3

−2
0

]
=

[
2− 3

−7− (−2)
−1− 0

]
=

[ −1
−5
−1

]
;

−5v = (−5)

[ −4
1
5

]
=

[
(−5) (−4)

(−5) 1
( 5) 5

]
=

[
20
−5
25

]
− −

3. w + 3v =

[
2

−7
−1

]
+ 3

[ −4
1
5

]
=

[
2 + 3 (−4)
−7 + 3 (1)
−1 + 3 (5)

]
=

[ −10
−4
14

]
;

2w − 7v = 2

[
2

−7
−1

]
− 7

[ −4
1
5

]
=

[
2 (2)− 7 (−4)
2 (−7)− 7 (1)
2 (−1)− 7 (5)

]
=

[
32

−21
−37

]
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4. 4w − u = 4

[
2

−7
−1

]
−

[
3

−2
0

]
=

[
4 (2)− 3

4 (−7)− (−2)
4 (−1)− 0

]
=

[
5

−26
−4

]
;

−2v + 5w = (−2)

[ −4
1
5

]
+ 5

[
2

−7
−1

]
=

[
(−2) (−4) + 5 (2)
(−2) (1) + 5 (−7)
(−2) (5) + 5 (−1)

]
=

[
18

−37
−15

]

5. −u+ v +w = −

[
3

−2
0

]
+

[ −4
1
5

]
+

[
2

−7
−1

]
=[ −3− 4 + 2

− (−2) + 1− 7
−0 + 5− 1

]
=

[ −5
−4
4

]
;

2u− v + 3w = 2

[
3

−2
0

]
−

[ −4
1
5

]
+ 3

[
2

−7
−1

]
=[

2 (3)− (−4) + 3 (2)
2 (−2)− 1 + 3 (−7)
2 (0)− 5 + 3 (−1)

]
=

[
16

−26
−8

]

6. 3u− 2v + 5w = 3

[
3

−2
0

]
− 2

[ −4
1
5

]
+ 5

[
2

−7
−1

]
=[

3 (3)− 2 (−4) + 5 (2)
3 (−2)− 2 (1) + 5 (−7)
3 (0)− 2 (5) + 5 (−1)

]
=

[
27

−43
−15

]
;

−4u+ 3v − 2w = −4

[
3

−2
0

]
+ 3

[ −4
1
5

]
− 2

[
2

−7
−1

]
=[

(−4) (3) + 3 (−4)− 2 (2)
(−4) (−2) + 3 (1)− 2 (−7)
(−4) (0) + 3 (5)− 2 (−1)

]
=

[ −28
25
17

]

7. 3x1 − x2 = 8
2x1 + 5x2 = 13

8. −x1 + 9x2 = −7
6x1 − 5x2 = −11
4x1 = 3−

9. −6x1 + 5x2 = 4
5x1 − 3x2 + 2x3 = 16

10. 2x1 + 5x3 + 4x4 = 0
7x1 + 2x2 + x3 + 5x4 = 4
8x1 + 4x2 + 6x3 + 7x4 = 3
3x1 + 2x2 + x3 = 5

11. x1

[
2

−1

]
+ x2

[
8

−3

]
+ x3

[
−4
5

]
=

[
−10

4

]

12. x1

[ −2
1
7

]
+ x2

[
5

−2
−17

]
+ x3

[ −10
3
34

]
=

[
4

−1
−16

]

13. x1

[
1

−2
−3

]
+ x2

[ −1
2

−3

]
+ x3

[ −3
6
10

]
+ x4

[ −1
2
0

]
=

[ −1
−1
5

]
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14. x1

[ −5
3
1

]
+ x2

[
9

−5
−2

]
=

[
13
−9
−2

]

15.

[
x1

x2

]
=

[
−4
0

]
+ s1

[
3
1

]
[ ] [ ]

16.
x1

x2
= s1

−2
1

17.

[
x1

x2

x3

]
=

[
7

−3
0

]
+ s1

[ −2
0
1

]

18.

 x1

x2

x3

x4

 =

 1
−2
0
0

+ s1

 3
0
0
1

+ s2

 −4
5
1
0



19.
 x1

x2

x3

x4


=
 4

0
−9
0


+ s1

 6
0
3
1


+ s2

 −5
1
0
0

       
       

20.


x1

x2

x3

x4

x5

 =


1
0
0

−12
0

+ s1


−7
0
0
1
1

+ s2


14
0
1
0
0

+ s3


−1
1
0
0
0

         
21. 1u+ 0v = u =

[
3

−2

]
, 0u+ 1v = v =

[
−1
−4

]
, 1u+ 1v =

[
3

−2

]
+

[
−1
−4

]
=

[
2

−6

]

22. 1u+ 0v = u =

[
7
1

−13

]
, 0u+ 1v = v =

[
5

−3
2

]
,

1u+ 1v =

[
7
1

−13

]
+

[
5

−3
2

]
=

[
12
−2
−11

]
.

4 2
23. 1u+ 0v + 0w = u =

[ −
0

−3

]
, 0u+ 1v + 0w = v =

[ −
−1
5

]
, 0u+ 0v + 1w = w =

[
9
6
11

]
.

24. 1u+ 0v + 0w = u =

 1
8
2
2


, 0u+ 1v + 0w = v =

 4
−2
5

−5


, 0u+ 0v + 1w = w =

 9
9
0
1


.     

25. −3

[
a
3

]
+ 4

[
−1
b

]
=

[
−10
19

]
⇒
[

−3a− 4
−9 + 4b

]
=

[
−10
19

]
⇒ −3a− 4 = −10 and −9 + 4b = 19.

Solving these equations, we obtain a = 2 and b = 7.

26. 4

[
4
a

]
+ 3

[
−3
5

]
− 2

[
b
8

]
=

[
−1
7

]
⇒
[

16− 9− 2b
4a+ 15− 16

]
=

[
−1
7

]
⇒

7− 2b = −1 and 4a− 1 = 7. Solving these equations, we obtain a = 2 and b = 4.
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27. −
−1
a
2

+ 2
3

−2
b

=
c

−7
8

⇒
1 + 6

−a− 4
−2 + 2b

=
c

−7
8

⇒

7 = c, a 4 = 7, and 2 + 2b = 8. Solving these equations, we obtain a = 3, b = 5, and c = 7.

[ ] [ ] [ ] [ ] [ ]
− − − −

28. −

[
a

−3
0

]
−

[
1
b
5

]
=

[
4
2
c

]
⇒

[ −a− 1
3− b
−5

]
=

[
4
2
c

]
⇒

− a− 1 = 4, 3− b = 2, and −5 = c. Solving these equations, we obtain a = −5, b = 1, and c = −5.

29. −

 1
2
a
1

+ 2

 b
1

−2
3

−

 2
c
5
0

 =

 −3
−4
3
d

 ⇒

 2b− 3
−c

−a− 9
5

 =

 −3
−4
3
d

 ⇒

2b − 3 = −3, −c = −4, −a − 9 = 3, and 5 = d. Solving these equations, we obtain a = −12, b = 0,
c = 4, and d = 5.

30. −

 a
4

−2
−1

+ 2

 5
1
b
3

−

 2
c

−3
−6

 =

 11
−4
3
d

 ⇒

 −a+ 10− 2
−4 + 2− c
2 + 2b+ 3
1 + 6 + 6

 =

 11
−4
3
d

 ⇒

−a+8 = 11, −2− c = −4, 5+2b = 3, and 13 = d. Solving these equations, we obtain a = −3, b = −1,
c = 2, and d = 13. [ ] [ ] [ ] [ ] [ ]

−2 7 8 −2x1 + 7x 8
31. x1a1 + x a x = ⇔ 2

2 2 = b ⇔ x1 + 2 = the
5 9 9[ ] ⇔−3 5x1 − 3x2

augmented matrix
−2 7 8

has a solution:
5 −3 9[

−2 7 8
5 −3 9

]
(5/2)R1+R2→R2∼

[
−2 7 8
0 29

2 29

]
From row 2, 29x2 = 29 ⇒ x2 = 2. From row 1, 2x1 + 7(2) = 8 x1 = 3. Hence b is a linear2
combination of a1 and a2 , with b =3a

− ⇒
1 + 2a2.

32. x1a1 + x2a2 = b ⇔ x1

[
4

−6

]
+ x2

[
−6
9

]
=

[
1

−5

]
⇔

[
4x1 − 6x2

−6x1 + 9x2

]
=

[
1

−5

]
⇔ the augmented matrix

[
4 −6 1

−6 9 −5

]
has a solution:

[
4 −6 1

−6 9 −5

]
(3/2)R1+R2→R2∼

[
4 −6 1
0 0 −7

2

]
Because no solution exists, b is not a linear combination of a1 and a2.[

2 0 1 2x1 1
33. x1a1 + x2a2 = b ⇔ x1 −3 + x2 3 = 5

1 −3
− ⇔ −3x1 + 3x2 = 5 . The
−2 ( ) x1 − 3x

−
2 −2

first equation 2x1 = 1 ⇒ x1 = 1 . 1 7( 2 )Then the second equation −3 + 3x2 = 5 x2 =2 − ⇒ − . We6

check the third equation, 1 − 3 7 = 4 = 2. Hence b is not6 − linear combination of a1 and a .2 − 2

] [ ] [ ] [ ] [ ]

̸

34. x1a1 + x2a2 = b ⇔ x1

[
2

−3
1

]
+ x2

[
0
3

−3

]
=

[
6
3

−9

]
⇔

[
2x1

−3x1 + 3x2

x1 − 3x2

]
=

[
6
3

−9

]
. The

first equation 2x1 = 6 ⇒ x1 = 3. Then the second equation −3 (3) + 3x2 = 3 ⇒ x2 = 4. We check
the third equation, 3− 3(4) = −9. Hence b is a linear combination of a1 and a2, with b =3a1 +4a2.
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35. x1a1+x2a2+x2a2 = b ⇔ x1

[
1
2
1

]
+x2

[ −3
5

−3

]
+x3

[
2
2
4

]
=

[
1

−2
3

]
⇔

[
x1 − 3x2 + 2x3

2x1 + 5x2 + 2x3

x1 − 3x2 + 4x3

]

=

[
1

−2
3

]
⇔ the augmented matrix

[
1 −3 2 1
2 5 2 −2
1 −3 4 3

]
yields a solution.

[
1 −3 2 1
2 5 2 −2
1 −3 4 3

] −2R1+R2→R2

−R1+R3→R3∼

[
1 −3 2 1
0 11 −2 −4
0 0 2 2

]

From row 3, we have 2x3 = 2 ⇒ x3 = 1. From row 2, 11x 2
2

2

− 2(1) = −4 ⇒ x2 = − . From row11

1, x1 − 3(− ) + 2 (1) = 1 ⇒ x 17
1 = − . Hence b is a linear combination of a1, a2, and a3, with11 11

b = −17a 2 a2 + a3.11 1
− 11 [ ] [ ] [ ] [ ]

36. x1a1 + x2a2 + x2a2 = b ⇔ x1

2
−3
1

+ x2

0
3

−3
+ x3

−2
−1
3

=
2

−4
5

⇔[
2x1 − 2x3

−3x1 + 3x2 − x3

x1 − 3x2 + 3x3

]
=

[
2

−4
5

]
⇔ the augmented matrix

[
2 0 −2 2

−3 3 −1 −4
1 −3 3 5

]
yields a solution.

[
2 0 −2 2

−3 3 −1 −4
1 −3 3 5

] (3/2)R1+R2→R2

(−1/2)R1+R3→R3∼

[
2 0 −2 2
0 3 −4 −1
0 −3 4 4

]

R2+R3→R3∼

[
2 0 −2 2
0 3 −4 −1
0 0 0 3

]
From the third equation, we have 0 = 3, and hence the system does not have a solution. Hence b is
not a linear combination of a1, a2, and a3.

37. Using vectors, we calculate

(2)

[
29
3
4

]
+ (1)

[
18
25
6

]
=

[
76
31
14

]
Hence we have 76 pounds of nitrogen, 31 pounds of phosphoric acid, and 14 pounds of potash.

38. Using vectors, we calculate

(4)

[
29
3
4

]
+ (7)

[
18
25
6

]
=

[
242
187
58

]
Hence we have 242 pounds of nitrogen, 187 pounds of phosphoric acid, and 58 pounds of potash.

39. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
112
81
26

]
Solve using the corresponding augmented matrix:[

29 18 112
3 25 81
4 6 26

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 112
0 671

29
2013
29

0 102
29

306
29


(−102/671)R2+R3→R3∼

 29 18 112
0 671

29
2013
29

0 0 0


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From row 2, we have 671x2 = 2013 ⇒ x2 = 3. Form row 1, we have 29x1 + 18(3) = 11229 29 ⇒ x1 = 2.
Thus we need 2 bags of Vigoro and 3 bags of Parker’s.

40. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
285
284
78

]

Solve using the corresponding augmented matrix:[
29 18 285
3 25 284
4 6 78

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 285
0 671

29
7381
29

0 102
29

1122
29


(−102/671)R2+R3→R3∼


29 18 285
0 671

29
7381
29

0 0 0

 
From row 2, we have 671x2 = 7381 ⇒ x2 = 11. Form row 1, we have 29x1 +18(11) = 28529 29 ⇒ x1 = 3.
Thus we need 3 bags of Vigoro and 11 bags of Parker’s.

41. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
123
59
24

]

Solve using the corresponding augmented matrix:[
29 18 123
3 25 59
4 6 24

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 123
0 671

29
1342
29

0 102
29

204
29


(29/671)R2→R2

(−102/29)R2+R3→R3∼

[
29 18 123
0 1 2
0 0 0

]

Back substituting gives x2 = 2 and x1 = 3. Hence we need 3 bags of Vigoro and 2 bags of Parker’s.

42. Let x1 be the amount of Vigoro, x2

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
159
109
36

]the amount of Parker’s, and then we need

Solve using the corresponding augmented matrix:

[
29 18 159
3 25 109
4 6 36

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 159
0 671

29
2684
29

0 102
29

408
29


(29/671)R2→R3

(−102/29)R2+R3→R3∼

[
29 18 159
0 1 4
0 0 0

]

Back substituting gives x2 = 4 and x1 = 3. Hence we need 3 bags of Vigoro and 4 bags of Parker’s.
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43. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
148
131
40

]

Solve using the corresponding augmented matrix:[
29 18 148
3 25 131
4 6 40

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 148
0 671

29
3355
29

0 102
29

568
29


(−102/671)R2+R3→R3∼

 29 18 148
0 671

29
3355
29

0 0 2


Since row 3 corresponds to the equation 0 = 2, the system has no solutions.

44. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
100
120
40

]

Solve using the corresponding augmented matrix:[
29 18 100
3 25 120
4 6 40

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 100
0 671

29
3180
29

0 102
29

760
29


(−102/671)R2+R3→R3∼


29 18 100
0 671

29
3180
29

0 0 6400
671

 
Since row 3 is 0 = 6400 , we conclude that we can not obtain the desired amounts.671

45. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
25
72
14

]

Solve using the corresponding augmented matrix:[
29 18 25
3 25 72
4 6 14

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 25
0 671

29
2013
29

0 102
29

306
29


(−102/671)R2+R3→R3∼


29 18 25
0 671

29
2013
29

0 0 0

 
From row 2, we have 671x2 = 2013 ⇒ x2 = 3. From row 1, we have 29x1 + 18(3) = 25 x1 = 1.29 29
Since we can not use a negative amount, we conclude that there is no solution.

⇒ −

46. Let x1 be the amount of Vigoro, x2 the amount of Parker’s, and then we need

x1

[
29
3
4

]
+ x2

[
18
25
6

]
=

[
301

8
38

]
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Solve using the corresponding augmented matrix:[
29 18 301
3 25 8
4 6 38

] (−3/29)R1+R2→R2

(−4/29)R1+R3→R3∼

 29 18 301
0 671

29 − 671
29

0 102
29 − 102

29


(−102/671)R2+R3→R3∼

 29 18 301
0 671

29 − 671
29

0 0 0


From row 2, we have 671x2 = −671 ⇒ x2 = 1.29 29 − Since we can not use a negative amount, we conclude
that there is no solution.

47. Let x1 be the number of cans of Red Bull, and x2 the number of cans of Jolt Cola, and then we need

x1

[
27
80

]
+ x2

[
94
280

]
=

[
148
440

]
Solve using the corresponding augmented matrix:[

27 94 148
80 280 440

]
(−80/27)R1+R2→R2∼

[
27 94 148
0 40

27
40
27

]
From row 2, we have 40x2 = 40 ⇒ x2 = 1. From row 1, 27x1 + 94(1) = 148 x1 = 2.27 27 ⇒ Thus we
need to drink 2 cans of Red Bull and 1 can of Jolt Cola.

48. Let x1 be the number of cans of Red Bull, and x2 the number of cans of Jolt Cola, and then we need

x1

[
27
80

]
+ x2

[
94
280

]
=

[
309
920

]
Solve using the corresponding augmented matrix:[

27 94 309
80 280 920

]
(−80/27)R1+R2→R2∼

[
27 94 309
0 40

27
40
9

]
From row 2, we have 40

27 9x2 = 40 x2 = 3⇒ . From row
need to drink 1 can of Red Bull and 3 cans of Jolt Cola.

1, 27x1 + 94(3) = 309 ⇒ x1 = 1. Thus we

49. Let x1 be the number of cans of Red Bull, and x2 the number of cans of Jolt Cola, and then we need

x1

[
27
80

]
+ x2

[
94
280

]
=

[
242
720

]
Solve using the corresponding augmented matrix:[

27 94 242
80 280 720

]
(−80/27)R1+R2→R2∼

[
27 94 242
0 40

27
80
27

]
From row 2, we have 40x2 = 80 ⇒ x2 = 2. From row 1, 27x1 + 94(2) = 242 x1 = 227 27 ⇒ . Thus we
need to drink 2 cans of Red Bull and 2 cans of Jolt Cola.

50. Let x1 be the number of cans of Red Bull, and x2 the number of cans of Jolt Cola, and then we need

x1

[
27
80

]
+ x2

[
94
280

]
=

[
457
1360

]
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Solve using the corresponding augmented matrix:[
27 94 457
80 280 1360

]
(−80/27)R1+R2→R2∼

[
27 94 457
0 40

27
160
27

]
From row 2, we have 40x2 = 160 ⇒ x2 = 4. From row 1, 27x1 + 94(4) = 45727 27 ⇒ x1 = 3. Thus we
need to drink 3 cans of Red Bull and 4 cans of Jolt Cola.

51. Let x1 be the number of servings of Lucky Charms and x2 the number of servings of Raisin Bran, and
then we need

x1

[
10
25
25

]
+ x2

[
2
25
10

]
=

[
40
200
125

]
Solve using the corresponding augmented matrix:[

10 2 40
25 25 200
25 10 125

] (−5/2)R1+R2→R2

(−5/2)R1+R3→R3∼

[
10 2 40
0 20 100
0 5 25

]
(−1/4)R2+R3→R3∼

[
10 2 40
0 20 100
0 0 0

]
From row 2, we have 20x2 = 100 ⇒ x2 = 5. From row 1, 10x1 + 2(5) = 40 ⇒ x1 = 3. Thus we need
3 servings of Lucky Charms and 5 servings of Raisin Bran.

52. Let x1 be the number of servings of Lucky Charms and x2 the number of servings of Raisin Bran, and
then we need

x1

[
10
25
25

]
+ x2

[
2
25
10

]
=

[
34
125
95

]
Solve using the corresponding augmented matrix:[

10 2 34
25 25 125
25 10 95

] (−5/2)R1+R2→R2

(−5/2)R1+R3→R3∼

[
10 2 34
0 20 40
0 5 10

]
(−1/4)R2+R3→R3∼

[
10 2 34
0 20 40
0 0 0

]
From row 2, we have 20x2 = 40 ⇒ x2 = 2. From row 1, 10x1 + 2(2) = 34 ⇒ x1 = 3. Thus we need
3 servings of Lucky Charms and 2 servings of Raisin Bran.

53. Let x1 be the number of servings of Lucky Charms and x2 the number of servings of Raisin Bran, and
then we need

x1

[
10
25
25

]
+ x2

[
2
25
10

]
=

[
26
125
80

]
Solve using the corresponding augmented matrix:[

10 2 26
25 25 125
25 10 80

] (−5/2)R1+R2→R2

(−5/2)R1+R3→R3∼

[
10 2 26
0 20 60
0 5 15

]
(−1/4)R2+R3→R3∼

[
10 2 26
0 20 60
0 0 0

]
From row 2, we have 20x2 = 60 ⇒ x2 = 3. From row 1, 10x1 + 2(3) = 26 ⇒ x1 = 2. Thus we need
2 servings of Lucky Charms and 3 servings of Raisin Bran.
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54. Let x1 be the number of servings of Lucky Charms and x2 the number of servings of Raisin Bran, and
then we need

x1

[
10
25
25

]
+ x2

[
2
25
10

]
=

[
38
175
115

]
Solve using the corresponding augmented matrix:[

10 2 38
25 25 175
25 10 115

] (−5/2)R1+R2→R2

(−5/2)R1+R3→R3∼

[
10 2 38
0 20 80
0 5 20

]
(−1/4)R2+R3→R3∼

[
10 2 38
0 20 80
0 0 0

]

From row 2, we have 20x2 = 80 ⇒ x2 = 4. From row 1, 10x1 + 2(4) = 38 ⇒ x1 = 3. Thus we need
3 servings of Lucky Charms and 4 servings of Raisin Bran.

55. (a) a =

[
2000
8000

]
, b =

[
3000
10000

]
(b) 8b = (8)

[
3000
10000

]
=

[
24000
80000

]
. The company produces 24000 computer monitors and 80000

flat panel televisions at facility B in 8 weeks.

6a + 6b = 6
2000
8000

+ 6
3000
10000

=
30000
108000

[ ] [ ] [ ]
. The company produces 30000 computer

monitors and 108000 flat panel televisions at facilities A and B in 6 weeks.

(d) Let x1 be the number of weeks of production at facility A, and x2 the number of weeks of
production at facility B, and then we need

(c)

2000 3000 24000
x1

[
8000

]
+ x2

[
10000

]
=

[
92000

]
Solve using the corresponding augmented matrix:[

2000 3000 24000
8000 10000 92000

]
(−4)R1+R2→R2∼

[
2000 3000 24000

0 −2000 −4000

]
From row 2, we have −2000x2 = −4000 ⇒ x2 = 2. From row 1, 2000x1 + 3000(2) = 24000
x

⇒
1 = 9. Thus we need 9 weeks of production at facility A and 2 weeks of production at facility B.

56. We assume a 5-day work week.

(a) a =

[
10
20
10

]
, b =

[
20
30
40

]
, c =

[
40
70
50

]
[ ] [ ]

40 800
(b) 20c = (20) 70 = 1400 . The company produces 800 metric tons of PE, 1400 metric tons

50 1000
of PVC, and 1000 metric tons of PS at facility C in 4 weeks.[

10 20 40 700
(c) 10a+ 10b+ 10c = 10 20 + 10 30 + 10 70 = 1200 . The company produces 700

10 40 50 1000
metric tons of PE, 1200 metric tons of PVC, and 1000 metric tons of PS at facilities A,B, and C
in 2 weeks.

] [ ] [ ] [ ]



346 Chapter 2: Euclidean Space

(d) Let x1 be the number of days of production at facility A, x2 the number of days of production at
facility B, and x3 the number of days of production at facility C. Then we need

x1

[
10
20
10

]
+ x2

[
20
30
40

]
+ x3

[
40
70
50

]
=

[
240
420
320

]
Solve using the corresponding augmented matrix:[

10 20 40 240
20 30 70 420
10 40 50 320

] −2R1+R2→R2

−R1+R3→R3∼

[
10 20 40 240
0 −10 −10 −60
0 20 10 80

]

2R2+R3→R3∼

[
10 20 40 240
0 −10 −10 −60
0 0 −10 −40

]
From row 3, we have −10x3 = −40 ⇒ x3 = 4. From row 2, −10x2 − 10(4) = −60 ⇒ x2 = 2.
From row 1, 10x1+20(2)+40(4) = 240 ⇒ x1 = 4. Thus we need 4 days of production at facility
A, 2 days of production at facility B, and 4 days of production at facility C.

57.

v = 5u1+3u2+2u3

5+3+2 = 1
10

(
5

[
3
2

]
+ 3

[
−1
4

]
+ 2

[
2
5

])
= 1

10

[
16
32

]
=

[
8
5
16
5

58. v = 4u1+1u2+2u3+5u4

4+1+2+5 = 1
12

(
4

[ −1
0
2

]
+ 1

[
2
1

−3

]
+ 2

[
0
4
3

]
+ 5

[
5
2
0

])
= 1

12

[
23
19
11

]
=
 23

12
19
12
11
12







]

59. Let x1, x2,and x3 be the mass of u1, u2, and u3 respectively. Then

v=
x1u1 + x2u2 + x3u3

11
=

1

11

(
x1

[
−1
3

]
+ x2

[
3

−2

]
+ x3

[
5
2

])
=

[
− 1

11x1 +
3
11x2 +

5
11x3

3
11x1 − 2

11x2 +
2
11x3

]
=

[
13
11
16
11

]
We obtain the 2 equations, −x1+3x2+5x3 = 13 and 3x1−2x2+2x3 = 16. Together with the equation
x1 + x2 + x3 = 11, we have 3 equations and solve the corresponding augmented matrix:[ −1 3 5 13

3 −2 2 16
1 1 1 11

] 3R1+R2→R2

R1+R3→R3∼

[ −1 3 5 13
0 7 17 55
0 4 6 24

]

(−4/7)R2+R3→R3∼


−1 3 5 13
0 7 17 55
0 0 − 26

7 −52
7

 
From row 3, −26

7 7
−x1 + 3(3) + 5(2) = 13 ⇒ x1 = 6.

x3 = 52 x3 = 2− ⇒ . From row 2, 7x2 + 17(2) = 55 ⇒ x2 = 3. From row 1,
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60. Let x1, x2, x3,and x4 be the mass of u1, u2, u3, and u4 respectively. Then

v =
x1u1 + x2u2 + x3u3 + x4u4

11
=

1

11

(
x1

[
1
1
2

]
+ x2

[
2

−1
0

]
+ x3

[
0
3
2

]
+ x4

[ −1
0
1

])

=

 1
11x1 +

2
11x2 − 1

11x4

1
11x1 − 1

11x2 +
3
11x3

2
11x1 +

2
11x3 +

1
11x4


=

 4
11
5
11
12
11

   
We obtain the 3 equations, x1 + 2x2 − x4 = 4, x1 − x2 + 3x3 = 5, and 2x1 + 2x3 + x4 = 12. Together
with the equation x1 +x2 +x3 +x4 = 11, we have 4 equations and solve the corresponding augmented
matrix:  1 2 0 −1 4

1 −1 3 0 5
2 0 2 1 12
1 1 1 1 11


−R1+R2→R2

−2R1+R3→R3

−R1+R4→R4∼

 1 2 0 −1 4
0 −3 3 1 1
0 −4 2 3 4
0 −1 1 2 7


(−4/3)R2+R3→R3

(−1/3)R2+R4→R4∼

 1 2 0 −1 4
0 −3 3 1 1
0 0 −2 5

3
8
3

0 0 0 5
3 3

20

  
From row 4, 5

3x4 = 20
3 x4 = 4⇒ . From row 3, −2x3 + 5

3 (4) = 8
3 ⇒ x3 = 2. From row 2,

−3x2 + 3(2) + 4 = 1 ⇒ x2 = 3. From row 1, x1 + 2(3)− 4 = 4 ⇒ x1 = 2.

61. For example, u = (0, 0, 1) and v = (3, 2, 0).−

62. For example, u = (4, 0, 0, 0) and v = (0, 2, 0, 1).

63. For example, u = (1, 0, 0), v = (1, 0, 0), and w = (−2, 0, 0).

64. For example, u = (1, 0, 0, 0), v = (1, 0, 0, 0), and w = (−2, 0, 0, 0).

65. For example, u = (1, 0) and v = (2, 0).

66. For example, u = (1, 0) and v = (−1, 0).

67. For example, u = (1, 0, 0), v = (2, 0, 0), and w = (3, 0, 0).

68. For example, u = (1, 0, 0, 0), v = (2, 0, 0, 0), w = (2, 0, 0, 0),and x = (4, 0, 0, 0).

69. Simply, x1 = 3 and x2 = −2.

70. For example, x1 − 2x2 = 1 and x2 + x3 = 1.

71. (a) True, since −2

[
−3
5

]
=

[
(−2)(−3)
(−2)(5)

]
=

[
6

−10

]
.

(b) False, since u− v =

[
1
3

]
−
[

−4
2

]
=

[
1− (−4)
3− 2

]
=

[
5
1

]
=

[
−3
1

]
̸ .

72. (a) False. Scalars may be any real number, such as c = −1.

(b) True. Vector components and scalars can be any real numbers.

73. (a) True, by Theorem 2.3(b).

(b) False. The sum c1 + u1 of a scalar and a vector is undefined.

74. (a) False. A vector can have any initial point.
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(b) False. They do not point in opposite directions, as there does not exist c < 0 such that

[
1

−2
4

]
=

c

[ −2
4
8

]
.

75. (a) True, by Definition 2.1, where it is stated that vectors can be expressed in column or row form.

(b) True. For any vector v, 0 = 0v.

76. (a) True, because −2 (−u) = (−2) ((−1)u) = (([ −2) (−1))u = 2u.] [ ]
(b) False. For example, x

0
0

=
0
1

has no solution.

77. (a) False. It works regardless of the quadrant, and can be established algebraically for vectors posi-
tioned anywhere.

(b) False. Because vector addition is commutative, one can order the vectors in either way for the
Tip-to-Tail Rule.

78. (a) False. For instance, if u = (2, 1) and v = (−1, 3), then u − v = (3,
(The

−2) while −u + v = (−3, 2).
difference u v is found by adding u to v.)− −

(b) True, as long as the vectors have the same number of components.

79. (a) Let u =


u1

u2

...
un

. Then (a+ b)u = (a+ b)


u1

u2

...
un

 =


(a+ b)u1

(a+ b)u2

...
(a+ b)un



=


au1 + bu1

au2 + bu2

...
aun + bun

 =


au1

au2

...
aun

+


bu1

bu2

...
bun

 = a


u1

u2

...
un

+ b


u1

u2

...
un

 = au+ bu.

(b) Let u =


u1

u2

...
un

, v =


v1
v2
...
vn

, and w =


w1

w2

...
wn

. Then

(u+ v) +w =




u1

u2

...
un

+


v1
v2
...
vn


+


w1

w2

...
wn

 =


u1 + v1
u2 + v2

...
un + vn

+


w1

w2

...
wn



=


(u1 + v1) + w1

(u2 + v2) + w2

...
(un + vn) + wn

 =


u1 + (v1 + w1)
u2 + (v2 + w2)

...
un + (vn + wn)

 =


u1

u2

...
un

+


v1 + w1

v2 + w2

...
vn + wn



=


u1

u2

...
un

+




v1
v2
...
vn

+


w1

w2

...
wn


=u+(v +w).

(c) Let u =


u1

u2

...
un

. Then a(bu) = a

b


u1

u2

...
un


 = a




bu1

bu2

...
bun



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=

 a (bu1)
a (bu2)

...
a (bun)

=
 (ab)u1

(ab)u2

...
(ab)un

 = (ab)

 u1

u2

...
un

 = (ab)u.     

(d) Let u =


u1

u2

...
un

. Then u+ (−u) =


u1

u2

...
un

+

−


u1

u2

...
un




=

 u1

u2

...
un

+

 −u1

−u2

...
un

 =

 u1 − u1

u2 − u2

...
un un

 =

 0
0
...
0

 = 0.  
−

 
−

  

(e) Let u =


u1

u2

...
un

. Then u + 0 =


u1

u2

...
un

 +


0
0
...
0

 =


u1 + 0
u2 + 0

...
un + 0

 =


u1

u2

...
un

 = u. Likewise,

0+ u =

 0
0
...
0


+

 u1

u2

...
un


=

 0 + u1

0 + u2

...
0 + un


=

 u1

u2

...
un


= u.       

(f) Let u =


u1

u2

...
un

. Then 1u = (1)


u1

u2

...
un

 =


(1)u1

(1)u2

...
(1)un

 =


u1

u2

...
un

 = u.

80. Using, for example, u =

[
2
1

]
and v =

[
1
3

]
.

1
The vector u− v =

[ ]
is the translation of the vector w′ which has initial point the tip of u and−2

terminal point the tip of v, as in Figure 6.

81.
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82.

83.

84.

85.

86.
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87. We obtain the three equations 2x1 + 2x2 + 5x3 = 0, 7x1 + 4x2 + x3 = 3, and 3x1 + 2x2 + 6x3 = 5.
Using a computer algebra system to solve this system, we get x1 = 4, x2 = −6.5, and x3 = 1.

88. We obtain the four equations x1+4x2−4x3+5x4 = 1, −3x1+3x2+2x3+2x4 = 7, 2x1+2x2 3x3 4x4 =
2, and x2 + x3 = −6. Using a computer algebra system to solve this system, we get x

− −
1 = 7.5399,

x2 = −1.1656, x3 = −4.8344, and x4 = −1.2270. (Solving this system exactly, we obtain x
−

1 = −1229 ,163

x2 = − 190 , x3 =163 − 788 , and x4 = − 200 .)163 163

2.2 Practice Problems

1. (a) 0u1+0u2 = 0

[
2

−3

]
+0

[
4
1

]
=

[
0
0

]
, 1u1+0u2 = 1

[
2

−3

]
+0

[
4
1

]
=

[
2

−3

]
, 0u1+1u2 =

0

[
2

−3

]
+ 1

[
4
1

]
=

[
4
1

]

(b) 0u1+0u2 = 0

[
6
1
4

]
+0

[ −2
3

−3

]
=

[
0
0
0

]
, 1u1+0u2 = 1

[
6
1
4

]
+0

[ −2
3

−3

]
=

[
6
1
4

]
, 0u1+1u2 =

0

[
6
1
4

]
+ 1

[ −2
3

−3

]
=

[ −2
3

−3

]

2. Set x1u1 + x2u2 = b ⇒ x1

[
1
2

]
+ x2

[
0
4

]
=

[ −1
2

]
⇒

−2 3 5[ ] [ ]
x1

2x1 + 4x2 =
−1
2 . From the first equation, x1 = −1. Then the second equation is 2 ( +

−2x1 + 3 2 5
−1)

x
4x2 = 2 ⇒ x2 = 1. The third equation is now −2 (−1) + 3 (1) = 5 5 = is in the span of
u ,u2 , with (

⇒ 5. So b
{ 1 } −1)u1 + (1)u2 = b.

3. (a) A =

[
7 −2 −2

−1 7 4
3 −1 −2

]
, x =

[
x1

x2

x3

]
, b =

[
6
11
1

]

(b) A =

[
4 −3 −1 5
3 12 6 0

]
, x =

 x1

x2

x3

x4

, b =

[
0
10

]

4. (a) Row-reduce to echelon form:[
2 3

−1 −2

]
(1/2)R1+R2→R2∼

[
2 3
0 − 1

2

]
There is not a row of zeros, so every choice of b is in the span of the columns of the given matrix
and, therefore, the columns of the matrix span R2.

(b) Row-reduce to echelon form:[
4 1
1 −3

]
(−1/4)R1+R2→R2∼

[
4 1
0 −13

4

]
Since there is not a row of zeros, every choice of b is in the span of the columns of the given
matrix, and therefore the columns of the matrix span R2.
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5. (a) Row-reduce to echelon form:[
1 3 −1

−1 −2 3
0 2 5

]
R1+R2→R2∼

[
1 3 −1
0 1 2
0 2 5

]

−2R2+R3→R3∼

[
1 3 −1
0 1 2
0 0 1

]

There is not a row of zeros, so every choice of b is in the span of the columns of the given matrix
and, therefore, the columns of the matrix span R3.

(b) Row-reduce to echelon form:

[
2 0 6
1 −2 1

−1 4 1

] (−1/2)R1+R2→R2

(1/2)R1+R3→R3∼

[
2 0 6
0 −2 −2
0 4 4

]

2R2+R3→R3∼

[
2 0 6
0 −2 −2
0 0 0

]

Because there is a row of zeros, there exists a vector b that is not in the span of the columns of
the matrix and, therefore, the columns of the matrix do not span R3.

6. (a) False. If the vectors span R3, then vectors have three components, and cannot span R2.

(b) True. Every vector b in R2 can be written as

b = x1u1 + x2u2

=
x1

2
(2u1) +

x2

3
(3u2)

which shows that {2u1, 3u2} spans R2.

(c) True. Every vector b in R3 can be written as b = x1u1 + x2u2 + x3u3. So Ax = b has the
solution

x =

[
x1

x2

x3

]
.

(d) True. Every vector b inR2 can be written as b = x1u1+x2u2 = x1u1+x2u2+0u3, so {u1,u2,u3

spans R2.
}

2.2 Span

1. 0u1 + 0u2 = 0

[
2
6

]
+ 0

[
9
15

]
=

[
0
0

]
, 1u1 + 0u2 = 1

[
2
6

]
+ 0

[
9
15

]
=

[
2
6

]
, 0u1 + 1u2 =

0

[
2
6

]
+ 1

[
9
15

]
=

[
9
15

]

2. 0u1+0u2 = 0

[
−2
7

]
+0

[
−3
4

]
=

[
0
0

]
, 1u1+0u2 = 1

[
−2
7

]
+0

[
−3
4

]
=

[
−2
7

]
, 0u1+1u2 =

0

[
−2
7

]
+ 1

[
−3
4

]
=

[
−3
4

]
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3. 0u1 + 0u2 = 0

[
2
5

−3

]
+ 0

[
1
0
4

]
=

[
0
0
0

]
, 1u1 + 0u2 = 1

[
2
5

−3

]
+ 0

[
1
0
4

]
=

[
2
5

−3

]
, 0u1 + 1u2 =

0

[
2
5

−3

]
+ 1

[
1
0
4

]
=

[
1
0
4

]

4. 0u1 +0u2 +0u3 = 0

[
0
5

−2

]
+0

[
1
2
6

]
+0

[ −6
7
2

]
=

[
0
0
0

]
, 1u1 +0u2 +0u3 = 1

[
0
5

−2

]
+0

[
1
2
6

]
+

0

[ −6
7
2

]
=

[
0
5

−2

]
, 0u1 + 1u2 + 0u3 = 0

[
0
5

−2

]
+ 1

[
1
2
6

]
+ 0

[ −6
7
2

]
=

[
1
2
6

]

5. 0u1 + 0u2 + 0u3 = 0

[
2
0
0

]
+ 0

[
4
1
6

]
+ 0

[ −4
0
7

]
=

[
0
0
0

]
, 1u1 + 0u2 + 0u3 = 1

[
2
0
0

]
+ 0

[
4
1
6

]
+

0

[ −4
0
7

]
=

[
2
0
0

]
, 0u1 + 1u2 + 0u3 = 0

[
2
0
0

]
+ 1

[
4
1
6

]
+ 0

[ −4
0
7

]
=

[
4
1
6

]

6. 0u1+0u2+0u3 = 0

 0
1
3
0

+0

 −1
8

−5
2

+0

 12
−1
1
0

 =

 0
0
0
0

, 1u1+0u2+0u3 = 1

 0
1
3
0

+0

 −1
8

−5
2

+
0

 12
−1
1
0

 =

 0
1
3
0

, 0u1 + 1u2 + 0u3 = 0

 0
1
3
0

+ 1

 −1
8

−5
2

+ 0

 12
−1
1
0

 =

 −1
8

−5
2



7. Set x1a1 = b ⇒ x1

[
3
5

]
=

[
9

−15

]
⇒
[

3x1

5x1

]
=

[
9

−15

]
.

From the first component, x1 = 3, but from the second component x1 = −3. Thus b is not in the span
of a1.

8. Set x1a1 = b ⇒ x1

[
10

−15

]
=

[
−30
45

]
⇒
[

10x1

−15x1

]
=

[
−30
45

]
.

From the first component, x1 = −3, and from the second component x1 = 3. Thus b = −3a1,and b is
in the span of a1.

9. Set x1a1 = b ⇒ x1

[
4

−2
10

]
=

[
2

−1
5

]
⇒

[
4x1

−2x1

10x1

]
=

[
2

−1
5

]
− −

.

From the first and second components, x1 = 1 , but from the third component x1 =2 − 1 . Thus b is not2
in the span of a1.

10. Set x1a1 + x2a2 = b ⇒ x1

[ −1
3
1

]
+ x2

[ −2
−3
6

]
=

[ −6
9
2

]
⇒

−[ −x1 − 2x2

3x1 − 3x2

−x1 + 6x2

]
=

[ −6
9
2

]
. We obtain 3 equations and row-reduce the associated augmented matrix
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to determine if there are solutions.[ −1 −2 −6
3 −3 9

−1 6 2

] 3R1+R2→R2

−R1+R3→R3∼

[ −1 −2 −6
0 −9 −9
0 8 8

]
(8/9)R2+R3→R3∼

[ −1 −2 −6
0 −9 −9
0 0 0

]

From the second row, −9x2 = −9 ⇒ x2 = 1.From row 1, −x1 − 2(1) = −6
b

⇒ x1 = 4. We conclude
is in the span of a1 and a2, with b = 4a1 + a2.

11. Set
1

x1a1 + x2a2 = b ⇒ x1

[ − 2
4 + x2 8 =

−10
8

3

] [
7

] [
−
7

]
⇒

− −[ ] [ ]−x1 + 2x2

4x1 + 8x
−10

2 = −8 . We obtain 3 equations and row-reduce the associated augmented matrix
−3x1 − 7x2 7

to determine if there are solutions.[ −1 2 −10
4 8 −8

−3 −7 7

] 4R1+R2→R2

−3R1+R3→R3∼

[ −1 2 −10
0 16 −48
0 −13 37

]
(13/16)R2+R3→R3∼

[ −1 2 −10
0 16 −48
0 0 −2

]

From the third row, 0 = 2,and hence there are no solutions. We conclude that there do not exist x1

and x2 such that x
−

1a1 + x2a2 = b, and therefore b is not in the span of a1 and a2.

12. Set x1a1 + x2a2 = b x1

 3
1

−
−1

  −4
2

3

  0
10

5

⇒
2

+ x2 3
=

1
⇒    

 3x1 − 4x2

x1 + 2x2

−2x1 + 3x2

−x1 + 3x2

 =

 0
10
1
5

. We obtain 4 equations and row-reduce the associated augmented matrix

to determine if there are solutions.

 3 −4 0
1 2 10

−2 3 1
−1 3 5


(−1/3)R1+R2→R2

(2/3)R1+R3⇒R3

(1/3)R1+R4→R4∼


3 −4 0
0 10

3 10

0 1
3 1

0 5
3 5


(−1/10)R2+R4→R3

(−1/2)R3+R4→R4∼


3 −4 0
0 10

3 10

0 0 0
0 0 0


From the second row, 10x2 = 10 ⇒ x2 = 3.From row 1, 3x1 4(3) = 0 x1 = 4. We conclude b is3
in the span of a1 and a2, with b = 4a

− ⇒
1 + 3a2.

13. A =

[
2 8 −4

−1 −3 5

]
, x =

[
x1

x2

x3

]
, b =

[
−10

4

]
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14. A =

[ −2 5 −10
1 −2 3
7 17 34

]
, x =

[
x1

x2

x3

]
, b =

[
4

−1
16

]
− −

15. A =

[
1 −1 −3 −1

−2 2 6 2
−3 −3 10 0

]
, x =

 x1

x2

x3

x4


, b =

[ −1
−1
5

] 
]

16. A =

[ −5 9
3 −5
1 −2

, x =

[
x1

x2

]
, b =

[
13
−9
−2

]

17. x1

[
5
1

]
+ x2

[
7

−5

]
+ x3

[
−2
−4

]
=

[
9
2

]

18. x1

[
4
3
6

]
+ x2

[ −5
4

−13

]
+ x3

[ −3
2
7

]
=

[
0
1
2

]

19. x1

[
4
0
3

]
+ x2

[ −2
−5
8

]
+ x3

[ −3
7
2

]
+ x4

[
5
3

−1

]
=

[
12
6
2

]

20. x1

[
4
2
1

]
+ x2

[ −9
4

−7

]
=

[
11
9
2

]

21. Row-reduce to echelon form: [
15 −6
−5 2

]
(1/3)R1+R2→R2∼

[
15 −6
0 0

]
Since there is a row of zeros, there exists a vector b which is not in the span of the columns of A, and
therefore the columns of A do not span R2.

22. Row-reduce to echelon form:[
4 −12
2 6

]
(−1/2)R1+R2→R2∼

[
4 −12
0 12

]
Since there is not a row of zeros, every choice of b is in the span of the columns of A, and therefore
the columns of A span R2.

23. Row-reduce to echelon form:[
2 1 0
6 −3 −1

]
−3R1+R2→R2∼

[
2 1 0
0 −6 −1

]
Since there is not a row of zeros, every choice of b is in the span of the columns of A, and therefore
the columns of A span R2.

24. Row-reduce to echelon form: [
1 0 5

−2 2 7

]
2R1+R2→R2∼

[
1 0 5
0 2 17

]
Since there is not a row of zeros, every choice of b is in the span of A, and therefore the columns of A
span R2.
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25. Row-reduce to echelon form:[
3 1 0
5 −2 −1
4 −4 −3

] (−5/3)R1+R2→R2

(−4/3)R1+R3→R3∼

 3 1 0
0 −11

3 −1

0 −16
3 −3


(−16/11)R2+R3→R3∼


3 1 0
0 −11

3 −1
0 0 −17

11

 
Since there is not a row of zeros, every choice of b is in the span of the columns of A, and therefore
the columns of A span R3.

26. Row-reduce to echelon form:[
1 2 8

−2 3 7
3 −1 1

] 2R1+R2→R2

−3R1+R3→R3∼

[
1 2 8
0 7 23
0 −7 −23

]

R2+R3→R3∼

[
1 2 8
0 7 23
0 0 0

]

Since there is a row of zeros, there exists a vector b which is not in the span of A, and therefore the
columns of A do not span R3.

27. Row-reduce to echelon form:[
2 1 −3 5
1 4 2 6
0 3 3 3

]
(−1/2)R1+R2→R2∼

 2 1 −3 5
0 7

2
7
2

7
2

0 3 3 3


(−6/7)R2+R3→R3∼

 2 1 −3 5
0 7

2
7
2

7
2

0 0 0 0


Since there is a row of zeros, there exists a vector b which is not in the span of the columns of A, and
therefore the columns of A do not span R3.

28. Row-reduce to echelon form:[ −4 −7 1 2
0 0 3 8
5 −1 1 −4

]
R2↔R3∼

[ −4 −7 1 2
5 −1 1 −4
0 0 3 8

]

(5/4)R1+R2→R2∼


−4 −7 1 2
0 − 39

4
9
4 − 3

2

0 0 3 8

 
Since there is not a row of zeros, every choice of b is in the span of A, and therefore the columns of A
span R3.

29. Row-reduce A to echelon form:[
3 −4
4 2

]
(−4/3)R1+R2→R2∼

[
3 −4
0 22

3

]
Since there is not a row of zeros, for every choice of b there is a solution of Ax = b.
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30. Row-reduce A to echelon form:[
−9 21
6 −14

]
(2/3)R1+R2→R2∼

[
−9 21
0 0

]
Since there is a row of zeros, there is a choice of b for which Ax = b has no solution.

31. Since the number of columns, m = 2, is less than n = 3, the columns of A do not span R3, and by
Theorem 2.9, there is a choice of b for which Ax = b has no solution.

32. Row-reduce A to echelon form.[
1 −1 2

−2 3 −1
1 0 5

] 2R1+R2→R2

−R1+R3→R3∼

[
1 −1 2
0 1 3
0 1 3

]

−R2+R3→R3∼

[
1 −1 2
0 1 3
0 0 0

]

Since there is a row of zeros, there is a choice of b for which Ax = b has no solution.

33. Row-reduce A to echelon form:[ −3 2 1
1 −1 −1
5 −4 −3

] (1/3)R1+R2→R2

(5/3)R1+R3→R3∼

 −3 2 1
0 −1

3 − 2
3

0 −2
3 − 4

3


(−2)R2+R3→R3∼


−3 2 1
0 −1

3 − 2
3

0 0 0

 
Since there is a row of zeros, there is a choice of b for which Ax = b has no solution.

34. Since the number of columns, m = 3, is less than n = 4, the columns of A do not span R4, and by
Theorem 2.11, there is a choice of b for which Ax = b has no solution.

35. b =

[
0
1

]
is not in span

{[
1

−2

]
,

[
−3
6

]}
, since span

{[
1

−2

]
,

[
−3
6

]}
= span

{[
1

−2

]}
and

b = c

[
1

−2

]
for any scalar c.̸

36. b =

[
0
1

]
is not in span

{[
3
1

]
,

[
6
2

]}
, since span

{[
3
1

]
,

[
6
2

]}
= span

{[
3
1

]}
and b =

c

[
3
1

]
for any scalar c.

̸

37. b =

[
0
0
1

]
is not in span

{[
1
3

−2

]
,

[
2

−1
1

]}
, since c1

[
1
3

−2

]
+c2

[
2

−1
1

]
=

[
0
0
1

]
has no solutions.

38. b =

[
0
0
1

]
is not in span

{[
1
2
1

]
,

[
3

−1
1

]
,

[ −1
5
1

]}
, since c1

[
1
2
1

]
+c2

[
3

−1
1

]
+c3

[ −1
5
1

]
=

[
0
0
1

]
has no solutions.

39. b =

[
1
1

]
is not in span

{[
1
2

]
,

[
4
8

]}
, because span

{[
1
2

]
,

[
4
8

]}
= span

{[
1
2

]}
and b =

c

[
1
2

]
for any scalar c.

̸
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40. b =

[
1
1

]
is not in span

{[
−3
2

]
,

[
15

−10

]}
, because span

{[
−3
2

]
,

[
15

−10

]}
= span

−3
2

and b = c
−3
2

for any scalar c.

{[ ]} [ ]
̸

41. b =

[
1
1

]
is not in span

{[
2

−4

]
,

[
−5
10

]
,

[
7

−14

]}
, because

span

{[
2

−4

]
,

[
−5
10

]
,

[
7

−14

]}
= span

{[
2

−4

]}
and b = c

[
2

−4

]
for any scalar c.̸

42. b =
1
1

is not in span
4
10

,
2
5

,
−6
−15

, because

span

{[
4
10

]
,

[
2
5

]
,

[
−6
−15

]}
= span

{[
2
5

]}
and b = c

[
2
5

]
for any scalar c.

[ ] {[ ] [ ] [ ]}
̸

43. b =

[
0
0
1

]
is not in span

{[
1
2
1

]
,

[
3
5
4

]}
, because c1

[
1
2
1

]
+ c2

[
3
5
4

]
=

[
0
0
1

]
has no solutions.

− −

44. b =

[
0
0
1

]
is not in span

{[
3
1
2

]
,

[
4

−1
3

]}
, because c1

[
3
1
2

]
+c2

[
4

−1
3

]
=

[
0
0
1

]
has no solutions.

45. b =

[
0
0
1

]
is not in span

{[
2
1
3

]
,

[ −5
2
1

]
,

[ −1
4
7

]}
, because c1

[
2
1
3

]
+ c2

[ −5
2
1

]
+ c3

[ −1
4
7

]
=[

0
0

]
has no solutions.

1

46. b =

[
0
0
1

]
is not in span

{[
1

−1
2

]
,

[
2

−3
7

]
,

[ −1
0
1

]}
, because c1

[
1

−1
2

]
+c2

[
2

−3
7

]
+c3

[ −1
0
1

]
=[

0
0
1

]
has no solutions.

̸
[

2 3
47. h = 3,since when h = 3 the vectors and are parallel and do not span R2.

4 6

] [ ]
̸

[ ] [ ]
12 3

48. h = , since when h = 12 the vectors
− 5 2
12 and are parallel and do not span R .5 5
5

−4

49. h = 4. This value for h was determined by row-reducing̸ [
2 h 1
4 8 2
5 10 6

]
˜

 2 h 1
0 8− 2h 0
0 0 7

2[ ] [ ] [ ] [ ]
2 h 1 x

Then c1 4 + c2 8 + c3 2 = y has a solution provided h = 4.
5 10 6 z


̸

50. h = −27. This value for h was determined by row-reducing̸ [ −1 4 1
h −2 −3
7 5 2

]
˜

 −1 4 1
0 33 9
0 0 − 1

11h− 27
11


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[ ] [ ] [ ] [ ]
Then c

−1 4 1 x

1 h + c2 −2 + c3 −3 = y has a solution provided h =
7 5 2 z

−27.̸

51. u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (1, 1, 1)

52. u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 0, 1, 0), u4 = (0, 0, 0, 1)

53. u1 = (1, 0, 0), u2 = (2, 0, 0), u3 = (3, 0, 0), u4 = (4, 0, 0)

54. u1 = (1, 0, 0, 0), u2 = (2, 0, 0, 0), u3 = (3, 0, 0, 0), u4 = (4, 0, 0, 0)

55. u1 = (1, 0, 0), u2 = (0, 1, 0)

56. u1 = (0, 1, 0, 0), u2 = (0, 0, 1, 0), u3 = (0, 0, 0, 1)

57. u1 = (1,−1, 0), u2 = (1, 0,−1)

58. u1 = (1,−1, 0, 0), u2 = (1, 0,−1, 0), u3 = (1, 0, 0,−1)

59. (a) True, by Theorem 2.9.

(b) False, the zero vector can be included with any set of vectors which already span Rn.

60. (a) False, since every column of A may be a zero column.

(b) False, by Example 5.

61. (a) False. Consider A = [1].

(b) True, by Theorem 2.11.

62. (a) True, the span of a set of vectors can only increase (with respect to set containment) when adding
a vector to the set.

(b) False. Consider u1 = (0, 0, 0), u2 = (1, 0, 0), u3 = (0, 1, 0), and u4 = (0, 0, 1).

63. (a) False. Consider u1 = (0, 0, 0), u2 = (1, 0, 0), u3 = (0, 1, 0), and u4 = (0, 0, 1).

(b) True. The span of {u1,u2,u3} will be a subset of the span of {u1,u2,u3,u4} .

64. (a) True. span {u1,u2,u3} ⊆ span {u1,u2,u3,u4} is always true. If a vector
w ∈ span {u1,u2,u3,u4}, then since u4 is a linear combination of {u1,u2,u3}, we can express
w as a linear combination of just the vectors u1,u2, and u3. Hence w is in span {u1,u2,u3 , and
we have span {u1,u2,u3,u4 span u1,u2,u3 .

}
} ⊆ { }

(b) False. If u4 is a linear combination of {u1,u2,u3} then span {u1,u2,u3,u4} = span {u1,u2,u3 .
(See problem 61, and the solutions to problems 43 and 45 for examples.)

}

65. (a) False. Consider u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 0, 1, 0), and u4 = (0, 0, 0, 1).

(b) True. Since u4 ∈ span {u1,u2,u3,u4}, but u4 ∈/ span {u1,u2,u3}.

66. (a) True, because c10+c2u1+c3u2+c4u3 = c2u1+c3u2+c4u3, span {u1,u2,u3} = span {0,u1,u2,u3} .
1 1

(b) False, because span {u1,u2} = span {u1} ∈/ R2, and

[
0

]
∈/ span

{[
1

]}
.

67. (a) Cannot possibly span R3, since m = 1 < n = 3.

(b) Cannot possibly span R3, since m = 2 < n = 3.

(c) Can possibly span R3. For example, u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) .

(d) Can possibly span R3. For example, u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (0, 0, 0).

68. (a) Cannot possibly span R3, since m = 1 < n = 3.

(b) Cannot possibly span R3, since m = 1 < n = 3.
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(c) Can possibly span R3. For example, u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) .

(d) Can possibly span R3. For example, u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (0, 0, 0).

69. Let w ∈ span {u}, then w = x u = x1
1 (cu), so wc ∈ span {cu} and thus span {u} ⊆ span {cu}. Now

let w span cu ,then w = x1(cu) = (x1c) (u), so w span u and thus span cu span u .
Together,

∈
we conclude

{ }
span

∈ { } { } ⊆ { }
u = span cu .{ } { }

( )
( ) ( )

70. Let w ∈ span {u ,u }, then w = x u + x u = x1 (c u x2
1 2 1 1 2 2 1 1) + (c2u2), so wc1 c2

∈ span {c1u1, c2u2}
and thus span {u1,u2 span c1u1, c2u2 . Now let w span c1u1, c2u2 , then w = x1(c1u1) +
x2(c2u2) = (x1c1) (u )

}
)
{

1 +
⊆
(x2c2 (u2),so w

}
span

∈
thus

{
span c u

}
∈ {u1,u2}and { 1 1, c2u2 span {

1u
⊆ u2 .

Together, we conclude span u1,u2 = span c
} u1, }

{ } { 1, c2u2} .

71. We may let S1 = {u1,u2, . . . ,um} and S2 = {u1,u2, . . . ,um,um+1, . . .un} where m ≤ n. Let w
span(S

∈
1), then

w=x1u1 + x2u2 + · · ·+ xmum

= x1u1 + x2u2 + · · ·+ xmum + 0um+1 + · · ·+ 0un

and thus w ∈ span(S2). We conclude that span (S1) ⊆ span (S2).

72. Let b ∈ R2,then b =x1u1 + x2u2 for some scalars x1 and x2 because span
x

{u1,u2} = R2. We can
rewrite b = 1+x2 (u1+u2)+

x1 x2 (u1 u2) , thus b span u1 + u2,u1 u2 . Since b was arbitrary,2
−
2 − ∈ { − }

span {u1 + u2,u1 − u2} = R2.

73. Let b R3,then b =x1u1 + x2u2 + x3u3 for some scalars x1, x2, and x3 because
span u

∈
{ ,u ,u } = R3. We can rewrite b =x1+x2−x3 (u +u )+ x1−x2+x3 x1+x2+x3

1 2 3 1 2 (u1+u3)+2 2
− (u2+2

u3),thus b ∈ span {u1 + u2,u1 + u3,u2 + u3}. Since b was arbitrary, span {u1 + u2,u1 + u3,u2 + u3} =
R3.

74. If b is in span u1, . . . ,um , then by Theorem 2.11 the linear system corresponding to the augmented
matrix

{ }

[u1 · · · um b]

has at least one solution. Since m > n, this system has more variables than equations. Hence the
echelon form of the system will have free variables, and since the system is consistent this implies that
it has infinitely many solutions.

75. Let A = [u1 · · ·um] and suppose A ∼ B, where B is in echelon form. Since m < n, the last row of
0
.B must consist of zeros. Form B1 by appending to B the vector e =


. ,.
1


so that B1 = [B e]. If

B1 is viewed as an augmented matrix, then the bottom row corresponds


to


the equation 0 = 1, so the

corresponding linear system is inconsistent. Now reverse the row operations used to transform A to
B, and apply these to B1. Then the resulting matrix will have the form [A e′]. This implies that e′

is not in the span of the columns of A, as required.

76. [(a) ⇒ (b)] Since b ∈ span {a1,a2, . . . ,am} there exists scalars x1, x2, . . . , xm such that b = x1a1 +
x2a2 + · · ·xmam, which is statement (b).
[(b) ⇒ (c)] The linear system corresponding to [ a1 a2 · · · am b ] can be expressed by the vector
equation x1a1 + x2a2 + · · ·xmam = b. By (b), x1a1 + x2a2 +
conclude that linear system corresponding to [ a1 a2

· · ·xmam = b has a solution, hence we

[(c) (d)] Ax = b has a solution provided the augmented
· · · am b ] has a solution.

⇒ matrix [ A b ] has a solution. In terms
of the columns of A, this is true if the augmented matrix [ a1 a2 am b ] has a solution. This
is what (c) implies, hence Ax = b has a solution.

· · ·

[(d) ⇒ (a)] If Ax = b has a solution, then x1a1+x2a2+ xmam = b where A = [ a1 a2 am ]
and x =(x , x , . . . , x ). Thus b span a ,a , . . . ,a

· ·
.
· · · ·

1 2 m ∈ { 1 2 m}
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77. True. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does not have any zero rows. Hence the vectors span R3.

78. False. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does have a zero row. Hence the vectors do not span R3.

79. False. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does have a zero row. Hence the vectors do not span R4.

80. True. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does not have any zero rows. Hence the vectors span R4.

2.3 Practice Problems

Section 2.3

1. (a) Consider x1u1 + x2u2 = 0, and solve using the corresponding augmented matrix:[
2 4 0

−3 1 0

]
(3/2)R1+R2→R2∼

[
2 4 0
0 7 0

]
The only solution is the trivial solution, so the vectors are linearly independent.

(b) Consider x1u1 + x2u2 = 0, and solve using the corresponding augmented matrix:[
6 −2 0
1 3 0
4 −3 0

] (−1/6)R1+R2→R2

(−2/3)R1+R3→R3∼

 6 −2 0
0 10

3 0

0 − 5
3 0


(1/2)R2+R3→R3∼


6 −2 0
0 10

3 0

0 0 0

 
The only solution is the trivial solution, so the vectors are linearly independent.

2. (a) We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 5 0
3 −4 0

]
−3R1+R2→R2∼

[
1 5 0
0 −19 0

]
The only solution is the trivial solution, so the columns of the matrix are linearly independent.

(b) We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 0 3 0
2 −2 4 0

−3 7 2 0

] −2R1+R2→R2

3R1+R3→R3∼

[
1 0 3 0
0 −2 −2 0
0 7 11 0

]
(7/2)R2+R3→R3∼

[
1 0 3 0
0 −2 −2 0
0 0 4 0

]
There is only the trivial solution; the columns of the matrix are linearly independent.

3. (a) We solve the homogeneous equation using the corresponding augmented matrix:[
1 4 2 0
2 8 4 0

]
−2R2+R3→R3∼

[
1 4 2 0
0 0 0 0

]
Because there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solu-
tions.
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(b) We solve the homogeneous equation using the corresponding augmented matrix:[
1 0 −1 1 0

−1 −1 0 1 0
−2 2 1 0 0

] R1+R2→R2

2R1+R3→R3∼

[
1 0 −1 1 0
0 −1 −1 2 0
0 2 −1 2 0

]

2R2+R3→R3∼

[
1 0 −1 1 0
0 −1 −1 2 0
0 0 3 6 0

]
−

Because there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solu-
tions.

1
4. (a) False, because

{[
0
0

]
,

[
0
1
0

]}
is linearly independent in R3 but does not span R3.

(b) True, by the Unifying Theorem.

(c) True. Because u1 − 4u2 = 4u2 − 4u2 = 0, {u1,u2} is linearly dependent.

1
(d) False. Suppose A =

[
1
]

0
, then the columns of A are linearly dependent, and Ax =

0 0

[
1

has no solutions.

]

2.3 Linear Independence

1. Consider x1u+ x2v = 0, and solve using the corresponding augmented matrix:[
3 −1 0

−2 −4 0

]
(2/3)R1+R2→R2∼

[
3 −1 0
0 −14

3 0

]
Since the only solution is the trivial solution, the vectors are linearly independent.

2. Consider x1u+ x2v = 0, and solve using the corresponding augmented matrix:[
6 −4 0

−15 −10 0

]
(5/2)R1+R2→R2∼

[
6 −4 0
0 −20 0

]
Since the only solution is the trivial solution, the vectors are linearly independent.

3. Consider x1u+ x2v = 0, and solve using the corresponding augmented matrix:[
7 5 0
1 −3 0

−13 2 0

] (−1/7)R1+R2→R2

(13/7)R1+R3→R3∼

 7 5 0
0 − 26

7 0

0 79
7 0


(79/26)R2+R3→R3∼

 7 5 0
0 − 26

7 0

0 0 0


Since the only solution is the trivial solution, the vectors are linearly independent.

4. Consider x1u+ x2v + x3w = 0, and solve using the corresponding augmented matrix:[ −4 −2 −8 0
0 −1 2 0

−3 5 −19 0

]
(−3/4)R1+R3→R3∼

 −4 −2 −8 0
0 −1 2 0
0 13

2 −13 0


(13/2)R2+R3→R3∼

[ −4 −2 −8 0
0 −1 2 0
0 0 0 0

]
Since there exist nontrivial solutions, the vectors are not linearly independent.
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5. Consider x1u+ x2v + x3w = 0, and solve using the corresponding augmented matrix:

[
3 0 2 0

−1 4 4 0
2 1 7 0

] (1/3)R1+R2→R2

(−2/3)R1+R3→R3∼

 3 0 2 0
0 4 14

3 0

0 1 17
3 0


(−1/4)R2+R3→R3∼

 3 0 2 0
0 4 14

3 0

0 0 9
2 0


Since the only solution is the trivial solution, the vectors are linearly independent.

6. Consider x1u+ x2v + x3w = 0, and solve using the corresponding augmented matrix:

 1 4 −1 0
8 −2 2 0
3 5 0 0
3 −5 1 0


−8R1+R2→R2

−3R1+R3→R3

−3R1+R4→R4∼

 1 4 −1 0
0 −34 10 0
0 −7 3 0
0 −17 4 0


(−7/34)R2+R3→R3

(−1/2)R2+R4→R4∼


1 4 −1 0
0 −34 10 0
0 0 16

17 0

0 0 −1 0


(17/16)R3+R4→R4∼


1 4 −1 0
0 −34 10 0
0 0 16

17 0

0 0 0 0


Since the only solution is the trivial solution, the vectors are linearly independent.

7. We solve the homogeneous system of equations using the corresponding augmented matrix:[
15 −6 0
−5 2 0

]
(2/3)R1+R2→R2∼

[
15 −6 0
0 0 0

]
Since there exist nontrivial solutions, the columns of A are not linearly independent.

8. We solve the homogeneous system of equations using the corresponding augmented matrix:[
4 −12 0
2 6 0

]
(−1/2)R1+R2→R2∼

[
4 −12 0
0 12 0

]
Since the only solution is the trivial solution, the columns of A are linearly independent.

9. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 0 0

−2 2 0
5 −7 0

] 2R1+R2→R2

−5R1+R3→R3∼

[
1 0 0
0 2 0
0 −7 0

]
(7/2)R2+R3→R3∼

[
1 0 0
0 2 0
0 0 0

]

There is only the trivial solution, the columns of A are linearly independent.
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10. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 −1 2 0

−4 5 −5 0
−1 2 1 0

] 4R1+R2→R2

R1+R3→R3∼

[
1 −1 2 0
0 1 3 0
0 1 3 0

]

−R2+R3→R3∼

[
1 −1 2 0
0 1 3 0
0 0 0 0

]
Since there are trivial solutions, the columns of A are linearly dependent.

11. We solve the homogeneous system of equations using the corresponding augmented matrix:[
3 1 0 0
5 −2 −1 0
4 −4 −3 0

] (−5/3)R1+R2→R2

(−4/3)R1+R3→R3∼

 3 1 0 0
0 − 11

3 −1 0

0 −16
3 −3 0


(−16/11)R2+R3→R3∼


3 1 0 0
0 −11

3 −1 0

0 0 −17
11 0

 
Since the only solution is the trivial solution, the columns of A are linearly independent.

12. We solve the homogeneous system of equations using the corresponding augmented matrix: −4 −7 1 0
0 0 3 0
5 −1 1 0
8 2 −4 0

 R2↔R4∼

 −4 −7 1 0
8 2 −4 0
5 −1 1 0
0 0 3 0


(5/4)R1+R3→R3

2R1+R2⇒R2∼


−4 −7 1 0
0 −12 −2 0
0 −39

4
9
4 0

0 0 3 0


(−13/16)R2+R3→R3

˜


−4 −7 1 0
0 −12 −2 0
0 0 31

8 0

0 0 3 0


(−24/31)R3+R4→R4

˜


−4 −7 1 0
0 −12 −2 0
0 0 31

8 0

0 0 0 0


Since the only solution is the trivial solution, the columns of A are linearly independent.

13. We solve the homogeneous equation using the corresponding augmented matrix:[
−3 5 0
4 1 0

]
(4/3)R1+R2→R2∼

[
−3 5 0
0 23

3 0

]
Since the only solution is the trivial solution, the homogeneous equation Ax = 0 has only the trivial
solution.

14. We solve the homogeneous equation using the corresponding augmented matrix:[
12 10 0
6 5 0

]
(−1/2)R1+R2→R2∼

[
12 10 0
0 0 0

]
Since there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solutions.
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15. We solve the homogeneous equation using the corresponding augmented matrix:[
8 1 0
0 −1 0

−3 2 0

]
(3/8)R1+R3→R3∼

 8 1 0
0 −1 0
0 19

8 0


(19/8)R2+R3→R3∼

[
8 1 0
0 −1 0
0 0 0

]

Since the only solution is the trivial solution, the homogeneous equation Ax = 0 has only the trivial
solution.

16. We solve the homogeneous equation using the corresponding augmented matrix:[ −3 2 1 0
1 −1 −1 0
5 −4 −3 0

] (1/3)R1+R2→R2

(5/3)R1+R3→R3∼

 −3 2 1 0
0 −1

3 − 2
3 0

0 −2
3 − 4

3 0


−2R2+R3→R3∼


−3 2 1 0
0 −1

3 − 2
3 0

0 0 0 0

 
Since there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solutions.

17. We solve the homogeneous equation using the corresponding augmented matrix:[ −1 3 1 0
4 −3 −1 0
3 0 5 0

] 4R1+R2→R2

3R1+R3→R3∼

[ −1 3 1 0
0 9 3 0
0 9 8 0

]

−R2+R3→R3∼

[ −1 3 1 0
0 9 3 0
0 0 5 0

]

The homogeneous equation Ax = 0 has only the trivial solution.

18. We solve the homogeneous equation using the corresponding augmented matrix: 2 −3 0 0
0 1 2 0

−5 3 −9 0
3 0 9 0

 (5/2)R1+R3→R3

(−3/2)R1+R4→R4∼


2 −3 0 0
0 1 2 0
0 −9

2 −9 0

0 9
2 9 0


(9/2)R2+R3→R3

(−9/2)R2+R3→R3∼

 2 −3 0 0
0 1 2 0
0 0 0 0
0 0 0 0

 
Since there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solutions.

19. Linearly dependent. Notice that u = 2v, so u− 2v = 0.

20. Linearly independent. The vectors are not scalar multiples of each other.

21. Linearly dependent. Apply Theorem 2.14.

22. Linearly independent. The vectors are not scalar multiples of each other.

23. Linearly dependent. Any collection of vectors containing the zero vector must be linearly dependent.
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24. Linearly dependent. Since u = v, u− v = 0.

25. We solve the homogeneous system of equations using the corresponding augmented matrix:[
6 1 0
2 7 0

−5 0 0

] (−1/3)R1+R2→R2

(5/6)R1+R3→R3∼

 6 1 0
0 20

3 0

0 5
6 0


(−1/8)R2+R3→R3∼


6 1 0
0 20

3 0

0 0 0

 
Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
Theorem 2.15, none of the vectors is in the span of the other vectors.

26. We solve the homogeneous system of equations using the corresponding augmented matrix:[
2 1 1 0
7 1 3 0

−1 6 0 0

] (−7/2)R1+R2→R2

(1/2)R1+R3→R3∼

 2 1 1 0
0 −5

2 − 1
2 0

0 13
2

1
2 0


(13/5)R2+R3→R3∼


2 1 1 0
0 −5

2 − 1
2 0

0 0 − 4
5 0

 
Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
Theorem 2.15, none of the vectors is in the span of the other vectors.

27. We solve the homogeneous system of equations using the corresponding augmented matrix:[
4 3 −5 0

−1 5 7 0
3 −2 −7 0

] (1/4)R1+R2→R2

(−3/4)R1+R3→R3∼

 4 3 −5 0
0 23

4
23
4 0

0 −17
4 − 13

4 0


(17/23)R2+R3→R3∼


4 3 −5 0
0 23

4
23
4 0

0 0 1 0

 
Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
Theorem 2.15, none of the vectors is in the span of the other vectors.

28. We solve the homogeneous system of equations using the corresponding augmented matrix:

 1 −1 3 0
7 3 1 0
8 5 −2 0
4 2 0 0


(−7)R1+R2→R2

(−8)R1+R3→R3

(−4)R1+R3→R3∼

 1 −1 3 0
0 10 −20 0
0 13 −26 0
0 6 −12 0


(−13/10)R2+R3→R3

(−3/5)R2+R4→R4∼

 1 −1 3 0
0 10 −20 0
0 0 0 0
0 0 0 0


Since there exist nontrivial solutions, the columns of the matrix are linearly dependent. By Theorem
2.15, one of the vectors is in the span of the other vectors.

29. We row–reduce to echelon form:[
2 −1
1 0

]
−(1/2)R1+R2→R2∼

[
2 −1
0 1

2

]
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Because the echelon form has a pivot in every row, by Theorem 2.9 Ax = b has a unique solution for
all b in R2.

30. We row–reduce to echelon form: [
4 1

−8 2

]
2R1+R2→R2∼

[
4 1
0 4

]
Because the echelon form has a pivot in every row, by Theorem 2.9 Ax = b has a unique solution for
all b in R2.

31. We row–reduce to echelon form:[
6 −9

−4 6

]
(2/3)R1+R2→R2∼

[
6 −9
0 0

]
Because the echelon form does not have a pivot in every row, by Theorem 2.9 Ax = b does not have
a solution for all b in R2.

32. We row–reduce to echelon form:[
1 −2
2 7

]
−2R1+R2→R2∼

[
1 −2
0 11

]
Because the echelon form has a pivot in every row, by Theorem 2.9 Ax = b has a unique solution for
all b in R2.

33. We solve the homogeneous system of equations using the corresponding augmented matrix:[
2 −1 0 0
1 0 1 0

−3 4 5 0

] (−1/2)R1+R2→R2

(3/2)R1+R3→R3∼

 2 −1 0 0
0 1

2 1 0

0 5
2 5 0


−5R2+R3→R3∼


2 −1 0 0
0 1

2 1 0

0 0 0 0

 
Since there exist nontrivial solutions, the columns of the matrix are linearly dependent. By The
Unifying Theorem, Ax = b does not have a unique solution for all b in R3.

34. We solve the homogeneous system of equations using the corresponding augmented matrix:[
3 4 7 0
7 −1 6 0

−2 0 2 0

] (−7/3)R1+R2→R2

(2/3)R1+R3→R3∼

 3 4 7 0
0 − 31

3 −31
3 0

0 8
3

20
3 0


(8/31)R2+R3→R3∼


3 4 7 0
0 − 31

3 −31
3 0

0 0 4 0

 
Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
The Unifying Theorem, Ax = b has a unique solution for all b in R3.

35. We solve the homogeneous system of equations using the corresponding augmented matrix:[
3 −2 1 0

−4 1 0 0
−5 0 1 0

] (4/3)R1+R2→R2

(5/3)R1+R3→R3∼

 3 −2 1 0
0 − 5

3
4
3 0

0 −10
3

8
3 0


−2R2+R3→R3∼

 3 −2 1 0
0 −5

3
4
3 0

0 0 0 0


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Since there exist nontrivial solutions, the columns of the matrix are linearly dependent. By The
Unifying Theorem, Ax = b does not have a unique solution for all b in R3.

36. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 −3 −2 0
0 1 1 0
2 4 7 0

]
−2R1+R3→R3∼

[
1 −3 −2 0
0 1 1 0
0 10 11 0

]

−10R2+R3→R3∼

[
1 −3 −2 0
0 1 1 0
0 0 1 0

]

Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
The Unifying Theorem, Ax = b has a unique solution for all b in R3.

37. u = (1, 0, 0, 0), v = (0, 1, 0, 0), w = (1, 1, 0, 0)

38. u = (1, 0, 0, 0, 0), v = (0, 1, 0, 0, 0), w = (0, 0, 1, 0, 0)

39. u = (1, 0), v = (2, 0), w = (3, 0)

40. u = (1, 0), v = (0, 1), w = (1, 1)

41. u = (1, 0, 0), v = (0, 1, 0), w = (1, 1, 0)

42. u = (1, 0, 0), v = (0, 1, 0), w = (0, 0, 1),x = (0, 0, 0) . The collection is linearly dependent, and x is a
trivial linear combination of the other vectors, so Theorem 2.15 is not violated.

43. (a) False. For example, u = (1, 0) and v = (2, 0) are linearly dependent but do not span R2.

1
(b) False. For example,

{[
0

]
,

[
0
1

]
,

[
1
1

]}
spans R2, but is not linearly independent.

44. (a) True, by Theorem 2.14.

1
(b) False. For example,

{[
1

]
,

[
2
2

]
,

[
3
3

]}
does not span R2.

(b) True. If every column has a pivot, then Ax = 0 has only the trivial solution, and therefore the
columns of A are linearly independent.

[
1 0 1 1 0 1

45. (a) False. For example, A = and has a pivot in every row, but the
0 1 1

∼
0 1 1

columns of A are not linearly independen

]
t.

[ ]

46. (a) False. If A = [ 1 1 ] , then Ax = 0 has infinitely many solutions, but the columns of A are
linearly dependent.

1
(b) False. For example, A =

[
1

1 1

]
has linearly dependent columns, and the columns of A do not

span R2.

1
47. (a) False. For example, A =

[ −1
2 2 has more rows than columns but the columns are linearly
0

−
0

]
dependent.

1 2 3
(b) False. For example, A = has more columns than rows, but the columns are linearly

0 0 0

dependent. (Theorem 2.14

[
can also

]
be applied here to show that no matrix with more columns

than rows can have linearly independent columns.)
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48. (a) False. Ax = 0 corresponds to x1a1 + · · ·+ xnan = 0, and by linear independence, each xi = 0.

1
(b) False. For example, if A =

[
1

]
and b =

[
1
0

]
, then Ax = b has no solution.

49. (a) False. Consider for example u4 = 0.

(b) True. If {u1,u2,u3} is linearly dependent, then x1u1 + x2u2 + x3u3 = 0 with at least one of
the xi = 0. Since x1u1 + x2u2 + x3u3 = 0 ⇒ x1u1 + x2u2 + x3u3 + 0u4 = 0, {u1,u2,u3,u4} is
linearly dependent.

̸

50. (a) True. Consider x1u1+x2u2+x3u3 = 0. If one of the xi = 0, then x1u1+x2u2+x3u3+0u4 = 0
would imply that {u1,u2,u3,u4} is linearly dependent, a contradiction. Hence each xi = 0, and
{u1,u2,u3} is linearly independent.

̸

(b) False. Consider u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1),u4 = (0, 0, 0).

51. (a) False. If u4 = x1u1 + x2u2 + x3u3, then x1u1 + x2u2 + x3u3 − u4 = 0, and since the coefficient
of u4 is −1, {u1,u2,u3,u4} is linearly dependent.

(b) True. If u4 = x1u1 + x2u2 + x3u3, then x1u1 + x2u2 + x3u3 u4 = 0, and since the coefficient
of u4 is 1, u

−
1,u2,u3,u4 is linearly dependent.− { }

52. (a) False. Consider u1 = (1, 0, 0), u2 = (1, 0, 0), u3 = (1, 0, 0),u4 = (0, 1, 0).

(b) False. Consider u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 0, 1, 0),u4 = (0, 0, 0, 1).

53. (a), (b), and (c). For example, consider u1 = (1, 0, 0), u2 = (1, 0, 0), and u3 = (1, 0, 0). (d) cannot be
linearly independent, by Theorem 2.14.

54. Only (c), since to span R3 we need at least 3 vectors, and to be linearly independent in R3 we can
have at most 3 vectors.

55. Consider x1(c1u1) + x2(c2u2) + x3(c3u3) = 0. Then (x1c1)u1 + (x2c2)u2 + (x3c3)u3 = 0, and since
{u1,u2,u3} is linearly independent, x1c1 = 0, x2c2 = 0, and x3c3 = 0. Since each ci = 0, we must
have each xi = 0. Hence, {c1u1, c2u2, c3u3} is linearly independent.

̸

56. Consider x1(u+v)+x2(u−v) = 0. This implies (x1 +x2)u+(x1 −x2)v = 0. Since {u,v} is linearly
independent, x1 + x2 = 0 and x1 − x2 = 0. Solving this system, we obtain x1 = 0 and x2 = 0. Thus
{u+ v,u− v} is linearly independent.

57. Consider x1(u1 + u2) + x2(u1 + u3) + x3 (u2 + u3) = 0. This implies (x1 + x2)u1 + (x1 + x3)u2 +
(x2 + x3)u3= 0. Since {u1,u2,u3 is linearly independent, x1 +x2 = 0, x1 +x3 = 0, and x2 +x3 = 0.
Solving this system, we obtain x1 =

}
0, x2 = 0, and x3 = 0. Thus {u1 + u2,u1 + u3,u2 + u3} is linearly

independent.

58. We can, by re-indexing, consider the non-empty subset as {u1,u2, . . . ,un} where 1 ≤ n ≤ m.
Let x1u1 + x2u2 + · · · + xnun = 0, then x1u1 + x2u2 + + xnun + 0un+1 + + 0um = 0.
Since {u1,u2, . . . ,un,un+1, . . . ,u is linearly independent,

· ·
ev
·

m} ery xi = 0, 1 ≤ i
· · ·

.
≤ n. Therefore,

{u1,u2, . . ,un} is linearly independent.

59. Suppose u1,u2, . . . ,un is linearly dependent set, and we add vectors to form a new set
{u1,u ,

{ }
2 . . . ,un, . . .um}. There exist xi with a least one xi = 0 such that x1u1+x2u2+ +xnun = 0.

Thus x1u1 + x2u2 + · · · + xnun + 0un+1 + · · · + 0um = 0, and so
· · ·

{u1,u2, . . . ,un, . . .um is linearly
dependent.

}
̸

60. Since {u,v,w} is linearly dependent, there exists scalars x1, x2, x3 such that x1u + x2v + x3w = 0,
and at least one xi = 0. If x3 = 0, then x1u + x2v = 0 with either x1 or x2 nonzero, contradicting
{u,v} is linearly independent. Hence x3 = 0, and we may write then w = (−x1/x3)u + (−x2/x3)v,
and therefore w is in the span of u,v .{ }

̸
̸

61. u and v are linearly dependent if and only if there exist scalars x1 and x2, not both zero, such that
x1u+ x2v = 0. If x1 = 0, then u = (−x2/x1)v = cv. If x2 = 0, then v = (−x1/x2)u = cu.̸ ̸
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62. Let ui be the vector in the ith nonzero row of A. Suppose the pivot in row i occurs in column ki. Let r
be the number of pivots, and consider x1u1+· · ·xrur = 0. Since A is in echelon form, the k1 component
of ui for i ≥ 2 must be 0. Hence when we equate the k1 component of x1u1 +
x = 0. Applying the same argument to the k component now with the equation

· · ·xrur = 0 we obtain
1 2 x2u2 +

we conclude that x = 0. Continuing in this way we see that x = 0 for all i, and hence
·
the
· ·xrur = 0

2 i nonzero
rows of A are linearly independent.

63. Suppose A = [ a1 a2 . . . am ] , x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym). Then we have
x− y = (x1 − y1, x2 − y2, . . . , xm − ym), and thus

A(x− y) = (x1 − y1)a1 + (x2 − y2)a2 + · · ·+ (xm − ym)am
= (x1a1 + x2a2 + · · ·+ xmam)− (y1a1 + y2a2 + · · ·+ ymam)

= Ax−Ay

64. Since u1 = 0 and u1,u2, . . . ,um is linearly dependent, there exists a smallest index r such that
{u

{
1,u2, . . . ,ur} is linearly independen

}
t but {u1,u2, . . . ,ur,ur+1 is linearly dependent. Consider

x1u1 + · · · + xrur + xr+1ur+1 = 0. Since u ,
}

1 u2, . . . ,ur,ur+1 is linearly dependent, at least one
of the xi = 0. If x =

{
r+1 0, then x1u1 + + xrur = 0, whic

}
h implies that xi = 0 for all i r

since {u
·

1,u2, . . . ,u
· ·

r} is linearly independent. But this contradicts that some xi = 0, and so we m
≤
ust

have xr+1 = 0. Thus we may write ur+1 = ( x1/xr+1)u1 + + ( xr/xr+1)ur. We select those
subscripts i with xi = 0 (there must

− · · · −( be at least) one, otherwise ur+1 = 0, a contradiction), and rewrite
ur+1 = (−xk1/xr+1)uk1 + · · · + −xkp/xr+1 ukp . We now have a vector ur+1 written as a linear
combination of a subset of the remaining v{ectors, with nonzero} coefficients. Since {u1,u2, . . . ,ur} is
linearly independent, this subset of vectors uk1 ,uk2 , . . . ,ukp is also linearly( independen) t (see exercise

56). Finally, these coefficients are unique, since( if (−xk1
/xr+1))uk1

+ · · ·+ −xkp
/xr+1 ukp

= y1uk1
+

·{· ·+ ypukp , then (}y1 − xk1/xr+1)uk1 + · · ·+ yp − xkp/xr+1 ukp = 0, and by linear independence of

uk1 ,uk2 , . . . ,ukp , each yi xki/xr+1 = 0, and thus yi = xki/xr+1.−

̸

̸
̸

̸
̸

65. Using a computer algebra system, the vectors are linearly independent.

66. Using a computer algebra system, the vectors are linearly dependent.

67. Using a computer algebra system, the vectors are linearly independent.

68. Using a computer algebra system, the vectors are linearly dependent.

69. We row–reduce to using computer software to obtain
2 1 −1 3

−5 3 1 2
−1 2 −2 1
1 −2 0 −3
3 1 −4 1

 ∼


1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 0
0 0 0 0

   
So, because Ax = 0 has infinitely many solutions, we conclude that the vectors are linearly dependent.

70. We row–reduce to using computer software to obtain
4 2 −3 0
2 3 2 2

−1 1 1 −1
5 −1 1 3
2 0 1 2

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


So, because Ax = 0 has only the trivial solution, we conclude that the vectors are linearly indepen-
dent.

71. Using a computer algebra system, Ax = b has a unique solution for all b in R3.
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72. Using a computer algebra system, Ax = b has a unique solution for all b in R3.

73. Using a computer algebra system, Ax = b does not have a unique solution for all b in R4.

74. Using a computer algebra system, Ax = b has a unique solution for all b in R4.

Chapter 2 Supplementary Exercises

1. u+ v =

[
1

−3
2

]
+

[ −2
4
1

]
=

[ −1
1
3

]
;

3w = 3
1
5 =

3
15

[
−
7

] [
−
21

]

2. v −w =

[ −2
4
1

]
−

[
1

−5
7

]
=

[ −3
9

−6

]
;

−4u = −4

[
1

−3
2

]
=

[ −4
12
−8

]

3. 2w + 3v = 2
1

−5
7

+ 3
−2
4
1

=
−4
2

17
;

2u− 5w = 2

[
1

−3
2

]
− 5

[
1

−5
7

]
=

[ −3
19

−31

]
[ ] [ ] [ ]

4. 3v + 2u = 3

[ −2
4
1

]
+ 2

[
1

−3
2

]
=

[ −4
6
7

]
;

−2u+ 4w = −2

[
1

−3
2

]
+ 4

[
1

−5
7

]
=

[
2

−14
24

]

5. 2u+ v + 3w = 2
1

−3
2

+
−2
4
1

+ 3
1

−5
7

=
3

−17
26

;

u− 3v + 2w =

[
1

−3
2

]
− 3

[ −2
4
1

]
+ 2

[
1

−5
7

]
=

[
9

−25
13

]
[ ] [ ] [ ] [ ]

6. u− 2v + 4w =

[
1

−3
2

]
− 2

[ −2
4
1

]
+ 4

[
1

−5
7

]
=

[
9

−31
28

]
;

−3u+ v − 2w = −3

[
1

−3
2

]
+

[ −2
4
1

]
− 2

[
1

−5
7

]
=

[ −7
23

−19

]

7. x1 − 2x2 = 1
−3x1 + 4x2 = −5
2x1 + x2 = 7

8. x1 + x2 = 4
−5x1 − 3x2 = −8
7x1 + 2x2 = −2
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9. 0

[
1

−3
2

]
+ 0

[ −2
4
1

]
=

[
0
0
0

]
; 1

[
1

−3
2

]
+ 0

[ −2
4
1

]
=

[
1

−3
2

]
;

0

[
1

−3
2

]
+ 1

[ −2
4
1

]
=

[ −2
4
1

]

10. 0

[
1

−5
7

]
+ 0

[ −2
4
1

]
=

[
0
0
0

]
; 1

[
1

−5
7

]
+ 0

[ −2
4
1

]
=

[
1

−5
7

]
;

0

[
1

−5
7

]
+ 1

[ −2
4
1

]
=

[ −2
4
1

]

11. x1u+ x2v = w ⇔ x1

[
1

−3
2

]
+ x2

[ −2
4
1

]
=

[
1

−5
7

]
⇔

[
x1 − 2x2

−3x1 + 4x2

2x1 + x2

]

=

[
1

−5
7

]
⇔ the augmented matrix

[
1 −2 1

−3 4 −5
2 1 7

]
has a solution:

[
1 −2 1

−3 4 −5
2 1 7

] 3R1+R2→R2

−2R1+R3→R3∼

[
1 −2 1
0 −2 −2
0 5 5

]
(5/2)R2+R3→R3∼

[
1 −2 1
0 −2 −2
0 0 0

]
Because a solution exists, w is a linear combination of u and v.

12. x1w + x2u = v ⇔ x1

1
−5
7

+ x2

1
−3
2

=
−2
4
1

⇔[
x1 + x2

−5x1 − 3x2

7x1 + 2x2

]
=

[ −2
4
1

]
⇔ the augmented matrix

[
1 1 −2

−5 −3 4
7 2 1

]
has a solution:

[
1 1 −2

−5 −3 4
7 2 1

] 5R1+R2→R2

−7R1+R3→R3∼

[
1 1 −2
0 2 −6
0 −5 15

]
(5/2)R2+R3→R3∼

[
1 1 −2
0 2 −6
0 0 0

]

[ ] [ ] [ ]

Because a solution exists, v is a linear combination of w and u.

13. Because w is in the span of u and v, by Exercise 11, {u,v,w} is linearly dependent.

14. Because {u,v,w} is linearly dependent, by Exercise 13, span {u,v,w} = R3.̸

15. x1

[
4
1

]
+ x2

[
13
−7

]
+ x3

[
−1
4

]
=

[
−7
12

]

16. x1

[
3

−1
−3

]
+ x2

[ −2
5
0

]
+ x3

[ −1
0
10

]
+ x4

[
2
1

−3

]
=

[
0

−7
2

]

17.

[
x1

x2

x3

]
=

[ −1
0
0

]
+ s1

[
2
3
1

]
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18.

[
x1

x2

x3

]
=

[
5

−4
0

]
+ s1

[ −7
0
1

]

19.

 x1

x2

x3

x4


=

 3
0

−1
0


+ s1

 −5
0
8
1


+ s2

 −1
1
0
0

       

20.


x1

x2

x3

x4

x5

 =


1
0
6
0
0

+ s1


1
0

−1
0
1

+ s2


0
0
4
1
0

+ s3


6
1
0
0
0

         
21. 2

−3
a

[ ]
+

[
−1
0

]
− 2

[
b
4

]
=

[
−2b− 7
2a− 8

]
, so we have the equations −2b− 7 = −2, and 2a− 8 = 5.

22. −

[
a
1

−2

]
+ 3

[
3
b
0

]
=

[
9− a
3b− 1

2

]
, so we have the equations 9− a = 1, 3b − 1 = −4, and 2 = c. We

solve these and obtain a = 8, b = 1, and c = 2.−

23. x1a1 + x2a2 = b ⇔ x

the augmented matrix

[
− −
4 −1 10

]
[

1 2 −1
−2 3 −11
4 −1 10

] 2R1+R2→R2

−4R1+R3→R3∼

[
1 2 −1
0 7 −13
0 −9 14

]

(9/7)R2+R3→R3∼


1 2 −1
0 7 −13
0 0 − 19

1 −2
4

+ x2 3
−1

= −11
10

⇔ −2x1 + 3x2

4x1 − x2

= −11
10

⇔

1 2 −1
2 3 11 yields a solution.

[
1
] [

2
] [ −1

] [
x1 + 2x2

] [ −1
]

7

 
From the third row, we have 0 = −19 , and hence the system does not have a solution. Hence b is not7
a linear combination of a1 and a2.

24. x1a1 + x2a2 + x3a3 = b ⇔ x1

 1
−3
0
2

+ x2

 0
2

−1
1

+ x3

 −2
0
3

−1

 =

 −2
−4
5
3

 ⇔

 x1 − 2x3

−3x1 + 2x2

−3x2 + 3x3

2x1 + x2 − x3

 =

 −2
−4
5
3

 ⇔ the augmented matrix

 1 0 −2 −2
−3 2 0 −4
0 −1 3 5
2 1 −1 3

 yields

a solution.  1 0 −2 −2
−3 2 0 −4
0 −1 3 5
2 1 −1 3

 3R1+R2→R2

−2R1+R4→R4∼

 1 0 −2 −2
0 2 −6 −10
0 −1 3 5
0 1 3 7


(1/2)R2+R3→R3

−(1/2)R2+R4→R4∼

 1 0 −2 −2
0 2 −6 −10
0 0 0 0
0 0 6 12



We solve these and obtain a = 13 and b =2 −5 .2
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From row 4, 6x3 = 12 ⇒ x3 = 2.From row 2, 2x2 − 6(2) = −10 ⇒ x2 = 1. From row 1, x1 − 2(2) =
−2 ⇒ x1 = 2. We conclude b is a linear combination of a1, a2, and a3 with b = 2a1 + a2 + 2a3.

x1

A =

[
2 3 −8 1
6 −1 4 −2

]
, x =

 x2

x3

x4

 , and b =

[
5
9

]
25.

26. A =

 3 −1 −7
−4 5 0
−8 2 6
1 3 9

 , x =

[
x1

x2

x3

]
, and b =

 2
−4
3
7


27. Set x1a1 + x2a2 = b ⇒ x1

[
3

−1
−2

]
+ x2

[
1
4
5

]
=

[ −1
5
7

]
⇒[

3x1 + x2

−x1 + 4x2

−2x1 + 5x2

]
=

[ −1
5
7

]
.We obtain 3 equations and row-reduce the associated augmented matrix

to determine if there are solutions.[
3 1 −1

−1 4 5
−2 5 7

] (1/3)R1+R2→R2

(2/3)R1+R3→R3∼  3 1 −1
0 13

3
14
3

0 17
3

19
3


−(17/13)R2+R3→R3∼

 3 1 −1
0 13

3
14
3

0 0 3
13



 

From the third row, 0 = 3 ,and hence there are no solutions. We conclude that there do not exist x113
and x2 such that x1a1 + x2a2 = b, and therefore b is not in the span of a1 and a2.

28. Set x1a1+x2a2+x3a3 = b ⇒ x1

 1
3
1
0

+x2

 −1
2
3
4

+x3

 2
2
0

−1

 =

 −3
4

−7
1

 ⇒

 x1 − x2 + 2x3

3x1 + 2x2 + 2x3

x1 + 3x2

4x2 − x3

 =

−3
 4

−7
1

. We obtain 4 equations and row-reduce the associated augmented matrix to determine if there

are solutions.  1 −1 2 −3
3 2 2 4
1 3 0 −7
0 4 −1 1

 −3R1+R2→R2

−R1+R3→R3∼

 1 −1 2 −3
0 5 −4 13
0 4 −2 −4
0 4 −1 1


(−4/5)R2+R4→R3

(−4/5)R3+R4→R4∼


1 −1 2 −3
0 5 −4 13
0 0 6

5 − 72
5

0 0 11
5 − 47

5


(−11/6)R3+R4→R4∼

 1 −1 2 −3
0 5 −4 13
0 0 6

5 − 72
5

0 0 0 17

 
From the third row, 0 = 17,and hence there are no solutions. We conclude that there do not exist x1,
x2, and x3 such that x1a1 + x2a2 + x3a3 = b, and therefore b is not in the span of a1, a2, and a3.
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29. {a1} does not span R2, by Theorem 2.9, because m = 1 < 2 = n.

30. Row-reduce to echelon form: [
6 −2

−9 3

]
(3/2)R1+R2→R2∼

[
6 −2
0 0

]
Because there is a row of zeros, there exists a vector b which is not in the span of the columns of the
matrix, and therefore {a1,a2} does not span R2.

31. Row-reduce to echelon form: [
1 −3
2 5

]
−2R1+R2→R2∼

[
1 −3
0 11

]
Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix,
and therefore {a1,a2} spans R2.

32. Row-reduce to echelon form:[
1 −1 2
3 −3 4

]
−3R1+R2→R2∼

[
1 −1 2
0 0 −2

]
Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix,
and therefore {a1,a2,a3} spans R2.

33. {a1} does not span R3, by Theorem 2.9, because m = 1 < 3 = n.

34. {a1,a2} does not span R3, by Theorem 2.9, because m = 2 < 3 = n.

35. Row-reduce to echelon form:[
1 −3 4
2 −5 6
5 4 11

] −2R1+R2→R2

−5R1+R3→R3∼

[
1 −3 4
0 1 −2
0 19 −9

]

−19R2+R3→R3∼

[
1 −3 4
0 1 −2
0 0 29

]

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix,
and therefore {a1,a2,a3} spans R3.

36. Row-reduce to echelon form:[
1 −1 1 −2

−3 2 −5 2
1 −2 −1 −6

] 3R1+R2→R2

−R1+R3→R3∼

[
1 −1 1 −2
0 −1 −2 −4
0 −1 −2 −4

]

−R2+R3→R3∼

[
1 −1 1 −2
0 −1 −2 −4
0 0 0 0

]

Since there is a row of zeros, there exists a vector b which is not in the span of the columns of the
matrix, and therefore {a1,a2,a3,a4} does not span R3.

37. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 −2 0

−5 9 0

]
5R1+R2→R2∼

[
1 −2 0
0 −1 0

]
Because the only solution is the trivial solution, the set of column vectors, {a1,a2} , is linearly inde-
pendent.
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38. We solve the homogeneous system of equations using the corresponding augmented matrix:[
9 −6 0

−6 4 0

]
(2/3)R1+R2→R2∼

[
9 −6 0
0 0 0

]
Because there exist nontrivial solutions, the set of column vectors, {a1,a2} , is not linearly independent.

39. By Theorem 2.14, because m = 3 > 2 = n, the set {a1,a2,a3} is not linearly independent.

40. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 −2 0
6 3 0

−2 0 0

] −6R1+R2→R2

2R1+R3→R3∼

[
1 −2 0
0 15 0
0 −4 0

]
(4/15)R2+R3→R3∼

[
1 −2 0
0 15 0
0 0 0

]

Because the only solution is the trivial solution, the set of column vectors, {a1,a2} , is linearly inde-
pendent.

41. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 −2 0
4 −8 0

−5 10 0

] −4R1+R2→R2

5R1+R3→R3∼

[
1 −2 0
0 0 0
0 0 0

]

Because there exist nontrivial solutions, the set of column vectors, {a1,a2} , is not linearly independent.

42. We solve the homogeneous system of equations using the corresponding augmented matrix:[
1 −2 2 0

−1 3 −5 0
3 4 9 0

] R1+R2→R2

−3R1+R3→R3∼

[
1 −2 2 0
0 1 −3 0
0 10 3 0

]

−10R2+R3→R3∼

[
1 −2 2 0
0 1 −3 0
0 0 33 0

]

Because the only solution is the trivial solution, the set of column vectors, {a1,a2,a3} , is linearly
independent.

43. We solve the homogeneous system of equations using the corresponding augmented matrix:[
3 −2 0 0
0 3 9 0
2 −4 −8 0

]
(−2/3)R1+R3→R3∼

 3 −2 0 0
0 3 9 0
0 −8

3 −8 0


(8/9)R2+R3→R3∼

[
3 −2 0 0
0 3 9 0
0 0 0 0

]

Because there exist nontrivial solutions, the set of column vectors, {a1,a2,a3} , is not linearly inde-
pendent.

44. By Theorem 2.14, because m = 4 > 3 = n, the set {a1,a2,a3,a4} is not linearly independent.



Chapter 2

Euclidean Space

2.1 Vectors

Key Points in This Section

1. A vector is an ordered list of real numbers u
1

, u

2

, . . . , u

n

written usually
in column form:

u =

2

66
u

1

u

2

...
u

n

3

77
(2.1)64 75

although sometimes also in row form:

u = u

1

u

2

u

n

or as u = (u
1

, u

2

, . . . , u

n

). (2.2)
⇥

· · ·
⇤

The individual entries in a vector are called the components. Two
vectors are considered equal if their components are the same.

2. The set of all vectors with n components is denoted Rn.

3. Vectors in Rn can be added component-wise:
2

666

u

1

u

2

...
u

n

777+
666

v

1

v

2

...
v

n

777 =
666

u

1

+ v

1

u

2

+ v

2

...
u

n

+ v

n

777 (2.3)
4 5 4 5 4 5

3 2 3 2 3
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4. A vector can be multiplied by a scalar, that is, a real number:

c

2

66
u

1

u

2

...
u

n

3

77
=

2

66
cu

1

cu

2

...
cu

n

3

77
(2.4)64 75 64 75

5. Euclidean space is the set Rn together with the operations of addition
and scalar multiplication. The commutative, associative, and distribu-
tive laws from arithmetic hold for these vector operations (Theorem
2.3).

6. Given vectors u ,u , . . . ,u in Rn

1 2 m

and scalars c
1

, c

2

, . . . , c

m

, the sum:

c

1

u
1

+ c

2

u
2

+ + c

m

u
m

(2.5)· · ·

is called a linear combination.

7. Linear systems can be written as vector equations involving a linear
combination where the scalars are the variables.

8. General solutions to linear systems can be expressed as a linear com-
bination. This is called the vector form of the general solution.

9. Vectors in R2 and R3 can be visualized as an arrow with a tail at the
origin and a tip at the point whose coordinates are the components of
the vector.

10. With this interpretation, the arithmetic of vectors can be restated:

(a) Addition: The vector u+ v is the vector whose tip is the tip of
v after translating v so that v’s tail is the tip of u.

(b) Scalar Multiplication: The vector cu is in the direction of u if
c > 0 and in the opposite direction if c < 0. The length of cu is
|c| times the length of u.

(c) Subtraction: The vector u�v is the vector whose tail is the tip
of v and whose tip is the tip of u.
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Teaching Suggestions

Students are introduced to the arithmetic of vectors, in particular the notions
of span and linear independence in this chapter. These notions are central
to the rest of the course, in particular for Chapters 4 and 7 where vector
spaces and subspaces are studied. There are no new computation techniques
introduced in this chapter, instead students learn to analyze what the solution
set to a linear system means in terms of the associated vector equation.

Vectors are defined as ordered lists of real numbers and written as a
column matrix. Most students will have probably used vectors before in
a physics class, or possibly multivariable calculus. There, vectors usually
have two or three components and are something that has both a length
(magnitude), and a direction. It is good to acknowledge that those objects
are in fact vectors as they are defined in linear algebra, but that the definition
of vector in linear algebra is more general. For the time being, only vectors
in Rn are considered. Vectors with more than three components can be
confusing enough and deemed pointless to some students. Examples will
help to familiarize your students to these concepts. Abstract vector spaces
are defined and studied starting in Chapter 7.

Most students will not struggle with the simple arithmetic of adding vec-
tors or multiplying by scalars. You should spend more time on emphasizing
the translation between linear systems and vector equations as this helps
to motivate the definition of matrix multiplication (Definition 2.10 in Sec-
tion 2.2). Further examining the relationship between the consistency of a
linear system and the ability to express a given vector as a linear combination
will help to motivate the next two sections.

Starting in this chapter, you will have to decide how much time should be
spent in class working through elementary row operations. Advanced classes
can start to skip this step altogether, or at least begin to perform multiple
steps at once, and after writing the augmented matrix on the board you can
then write the solution and leave the steps as an exercise. In other classes you
should plan on doing such a calculation occasionally but should not spend the
majority of classtime on such calculations as this places too much emphasis
on calculation rather than concepts. The amount of calculations to work out
in class could be judged by quiz or homework performance.
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Suggested Classroom Examples

2.1.1 Example. Let:

u =


�1
2

�
, v =


3
0

�
, w =


2
1

�

Compute the following and sketch the corresponding vectors.

1. u+ v

2. v w�

3. �2u

4. u+ 2w

Solution.

1. u+ v =


�1
2

�
+


3
0

�
=


�1 + 3
2 + 0

�
=


2
2

�

2. v �w =


3
0

�
�


2
1

�
=


3� 2
0� 1

�
=


1

�1

�

3. �2u = 2


�1
2

�
=


2(�1)
2(2)

�
=


�2
4

�

4. u+ 2w =


�1
2

�
+ 2


2
1

�
=


�1 + 2(2)
2 + 2(1)

�
=


3
4

�

The vectors are shown in Figure 2.1.

2.1.2 Example. Find two di↵erent linear combinations of:

u =

2
1

�2
6

3

, v =

2
0
4

�1

3

4 5 4 5

Solution. Using the scalars 2 and �1 we have:

2u� v = 2

2
1

�2
6

3

�

2
0
4

�1

3

=

2
2(1)� 0

2(�2)� 4
2(6)��1

3

=

2
2

�8
13

3

(2.6)4 5 4 5 4 5 4 5
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u

v

v

w

u!v

v"w

v"w

"2u

u!2w

!2 !1 1 2 3 4
x

!4

!2

2

4

y

Figure 2.1: The vectors from Example 2.1.1. Translated vectors are shown
as dotted.

Using the scalars 3 and 0 we have:

3u+ 0v = 3

2

4
1

�2
6

3

5+ 0

2

4
0
4

�1

3

5 =

2

4
3(1) + 0

3(�2) + 0
3(6) + 0

3

5 =

2

4
3

�6
18

3

5 (2.7)

}

2.1.3 Example. Express the given vector equation as a linear system.

1. x

1


3

�4

�
+ x

2


�1
7

�
=


�3
0

�
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2. x

1

2

4
2
0

�3

3

5+ x

2

2

4
6

�1
3

3

5+ x

3

2

4
1
3
0

3

5 =

2

4
4
4
3

3

5

Solution.

1.
3x

1

� x

2

= �3
�4x

1

+ 7x
2

= 0

2.
2x

1

+ 6x
2

+ x

3

= 4
�x

2

+ 3x
3

= 4
�3x

1

+ 3x
2

= 3

}

2.1.4 Example. Express the given linear system as a vector equation.

1.
x

1

+ 3x
2

= 5
�2x

1

+ 3x
2

= �1

2.
5x

1

� x

2

+ 2x
3

= �4
2x

1

� x

3

= 3
�x

1

+ 3x
2

+ 7x
3

= 0

Solution.

1
1. x

1



�2

�
+ x

2


3
3

�
=


5

�1

�

2. x

1

2
5
2

�1

3

+ x

2

2
�1
0
3

3

+ x

3

2
2

�1
7

3

=

2
�4
3
0

3

4 5 4 5 4 5 4 5

2.1.5 Example. Write the general solution to the following linear systems
in vector form, that is, as a linear combination of vectors:

1.
2x

1

+ 3x
2

� x

3

= �2
4x

1

+ 5x
2

� 3x
3

= �2
�x

1

+ 3x
2

+ 5x
3

= �8
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2.
x

1

+ 3x
2

+ 3x
4

� 5x
5

= 5
x

3

� 6x
4

+ 10x
5

= �7
3x

4

� 4x
5

= 6

Solution.

1. This system appears as the second system in Example 1.2.5. We found
the general solution to be:

x

1

= 2 + 2s
1

= 2 + 2s
1

x

2

= �2� s

1

= �2 � 1s
1

x

3

= s

1

= 0 + 1s
1

(2.8)

In vector form we have:

x =

2
x

1

x

2

x

3

3

=

2
2

�2
0

3

+ s

1

2
2

�1
0

3

(2.9)4 5 4 5 4 5

2. This system appears in Example 1.1.7. We found the general solution
to be:

x

1

= �1� 3s
1

+ s

2

= �1 � 3s
1

+ 1s
2

x

2

= s

1

= 0 + 1s
1

+ 0s
2

x

3

= 5 + 2s
2

= 5 + 0s
1

+ 2s
2

x

4

= 2 + 4

3

s

2

= 2 + 0s
1

+ 4

3

s

2

x

5

= s

2

= 0 + 0s
1

+ 1s
2

(2.10)

In vector form we have:

x =

2

66664

x

1

x

2

x

3

x

4

x

5

3

77775
=

2

66664

�1
0
5
2
0

3

77775
+ s

1

2

66664

�3
1
0
0
0

3

77775
+ s

2

2

66664

1
0
2
4

3

1

3

77775
(2.11)

}

2.1.6 Example. Express b as a linear combination of a
1

and a
2

if possible
where:

a
1

=


�1
2

�
, a

2

=


3
0

�
, b =


2
1

�
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Solution. We are seeking scalars x
1

and x

2

such that:

x

1


�1
2

�
+ x

2


3
0

�
=


2
1

�
(2.12)

This vector equation corresponds to the linear system:

�x

1

+ 3x
2

= 2
2x

1

= 1
(2.13)

Interchanging the roles of x
1

and x

2

, this system is in triangular form so we
can solve via back substitution starting with x

1

. The second equation gives
x

1

= 1

2

. Substituting this into the first equation, we have:

�
✓
1

2

◆
+ 3x

2

= 2 ) 3x
2

= 2 +
1

2
=

5

2
(2.14)

Thus x
2

= 5

6

. This gives:

1

2
a
1

+
5

6
a =

1

2


�1
2

�
+

5

6


3
0

�
=


�1

2

+ 5

2

1 + 0

�
=


2
1

�
= b (2.15)

}

2.1.7 Example. Express b as a linear combination of a
1

, a
2

and a
3

if
possible where:

a
1

=

2

4
1
0
1

3

5
, a

2

=

2

4
2
1
0

3

5
, a

3

=

2

4
1

�3
1

3

5
, b =

2

4
9
7
1

3

5

Solution. We are seeking scalars x
1

, x

2

and x

3

such that:

x

1

2
1
0
1

3

+ x

2

2
2
1
0

3

+ x

3

2
1

�3
1

3

=

2
9
7
1

3

(2.16)4 5 4 5 4 5 4 5

This vector equation corresponds to the linear system:

x

1

+ 2x
2

+ x

3

= 9
x

2

� 3x
3

= 7
x

1

+ x

3

= 1
(2.17)
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We apply elementary row operations to the augmented matrix to solve.
2

4
1 2 1 9
0 1 �3 7
1 0 1 1

3

5 �R1+R3)R3

⇠

2

4
1 2 1 9
0 1 �3 7
0 �2 0 �8

3

5

R2,R3

⇠

2

4
1 2 1 9
0 �2 0 �8
0 1 �3 7

3

5

� 1
2R2)R2

⇠

2

4
1 2 1 9
0 1 0 4
0 1 �3 7

3

5

�2R2+R1)R1

�R2+R3)R3

⇠

2

4
1 0 1 1
0 1 0 4
0 0 �3 3

3

5

� 1
3R3)R3

⇠

2

4
1 0 1 1
0 1 0 4
0 0 1 �1

3

5

�R3+R1)R1

⇠

2

4
1 0 0 2
0 1 0 4
0 0 1 �1

3

5

Therefore, the unique solution to the linear system in (2.17) is x
1

= 2, x
2

= 4
and x

3

= �1. This gives:

2a
1

+ 4a
2

� a
3

= 2

2

4
1
0
1

3

5+ 4

2

4
2
1
0

3

5�

2

4
1

�3
1

3

5 (2.18)

=

2
2(1) + 4(2)� 1

2(0) + 4(1)��3
2(1) + 4(0)� 1

3

=

2
9
7
1

3

= b4 5 4 5

2.1.8 Example. Express b as a linear combination of a
1

, a
2

, and a
3

if
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possible where:

a
1

=

2

4
1
0
1

3

5
, a

2

=

2

4
2
1
0

3

5
, a

3

=

2

4
�1
1

�3

3

5
, b =

2

4
6
1
3

3

5

Solution. We are seeking scalars x
1

, x

2

and x

3

such that:

x

1

2

4
1
0
1

3

5+ x

2

2

4
2
1
0

3

5+ x

3

2

4
�1
1

�3

3

5 =

2

4
6
1
3

3

5 (2.19)

This vector equation corresponds to the linear system:

x

1

+ 2x
2

� x

3

= 6
x

2

+ x

3

= 1
x

1

� 3x
3

= 3
(2.20)

We apply elementary row operations to the augmented matrix to solve.

2

4
1 2 �1 6
0 1 1 1
1 0 �3 3

3

5 �R1+R3)R3

⇠

2

4
1 2 �1 6
0 1 1 1
0 �2 �2 �3

3

5

�2R2+R1)R1

2R2+R3)R3

⇠

2
1 0 �3 4
0 1 1 1
0 0 0 �1

3

4 5

The third equation in the corresponding linear system is 0 = �1 which has
no solution. Hence it is not possible to express b as a linear combination of
a
1

, a
2

, and a
3

. }
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2.2 Span

Key Points in This Section

1. Given a set of vectors u
1

,u
2

, . . . ,u
m

in Rn, the set of all possible linear
combinations:

x

1

u
1

+ x

2

u
2

+ + x

m

u
m

(2.21)· · ·
where x

1

, x

2

, . . . , x

m

are real numbers, is called the span of the set and
is denoted span{u

1

,u
2

, . . . ,u
m

}.

2. A set of vectors u
1

,u
2

, . . . ,u
m

spans Rn if span{u
1

,u
2

, . . . ,u
m

} = Rn.

3. Determining whether or not a given vector v is in span{u
1

,u
2

, . . . ,u
m

}
gives rise to a vector equation and hence a linear system via the previous
section. The augmented matrix of this linear system is:

⇥
u
1

u
2

· · · u
m

v (2.22)
⇤

This system has a solution if and only if v is in span{u
1

,u
2

, . . . ,u
m

}
(Theorem 2.6).

4. If u,u
1

,u
2

, . . . ,u
m

are vectors in Rn and u is in span{u
1

,u
2

, . . . ,u
m

},
then:

span{u,u
1

,u
2

, . . . ,u
m

} = span{u
1

,u
2

, . . . ,u
m

} (2.23)

(Theorem 2.7).

5. Suppose u
1

,u
2

, . . . ,u
m

are vectors in Rn and let

A = u
1

u
2

· · · u
m

⇠ B

⇥ ⇤

where B is in echelon form. Then span{u
1

,u
2

, . . . ,u
m

} = Rn exactly
when B has a pivot position in every row (Theorem 2.8).

6. If u
1

,u
2

, . . . ,u
m

are vectors in Rn and m < n, then

span{u
1

,u
2

, . . . ,u
m

} = Rn (2.24)6

(Theorem 2.9).
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7. Matrix–vector multiplication is defined so that a linear system can be
compactly expressed as Ax = b. If:

A =
⇥
a
1

a
2

· · · a
m

⇤
and x =

2

666

x

1

x

2

...
x

m

3

777 (2.25)
4 5

where a
1

, a
2

, . . . , a
m

are vectors in Rn, then

Ax = x

1

a
1

+ x

2

a
2

+ · · ·+ x

m

a
m

. (2.26)

Notice that the number of columns of A must equal the number of
components (rows) of x.

8. Suppose a
1

, a
2

, . . . , a
m

and b are vectors in Rn. Then the following
statements are equivalent.

(a) b is in span{a
1

, a
2

, . . . , a
m

}.
(b) The vector equation x

1

a
1

+ x

2

a
2

+ · · · + x

m

a
m

= b has at least
one solution.

(c) The linear system corresponding to
⇥
a
1

a
2

· · · a
m

b
⇤
has at

least one solution.

(d) The equation Ax = b, with A and x as given in (2.25), has at
least one solution.

(Theorem 2.11)

Teaching Suggestions

There are no new computational techniques developed in this section, but
students must learn to interpret what the calculations they have been per-
forming in Chapter 1 mean in terms of vector equations. Examples with
simple linear systems, as given in Example 2.2.1, are useful here to allow
students to focus on the new concept and not bother with computations.

The definition of matrix-vector product as a linear combination of the
columns of the matrix should be emphasized as it plays a major role in sub-
sequent chapters. This comment is so important it warrants repetition: Ax
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is a linear combination of the columns of A, the scalar being the components
of x.

You will need to make a decision now about how much rigor the course
will include. For instance, the proof of Theorem 2.9 is mainly shown with
an illustrative example whereas you might wish to give a general proof. The
abstraction and notation necessary for such a proof might distract from the
content. For classes where an introductory course on proof writing is a pre-
requisite, Exercises 69–76 make for good problems for students to try as they
often involve writing definition, performing one or two lines of manipulation,
and then interpretation.

A good problem to pose to the students to see if they understand span
and as a lead into the next section is to ask them to give an example of a set
of three vectors that do not span R3. They should stumble upon the notion
of linear dependence on their own.

Suggested Classroom Examples

2.2.1 Example. Determine whether or not the given vector b is in the span
of the vectors u

1

and u
2

.

1. u
1

=


1
2

�
, u

2

=


�1
�3

�
, b =


4

�2

�

2. u
1

=

2

4
1
0

�2

3

5
, u

2

=

2

4
0
2
1

3

5
, b =

2

4
1

�4
�4

3

5

3. u
1

=

2

4
1
0

�2

3

5
, u

2

=

2

4
0
2
1

3

5
, b =

2

4
4

�1
4

3

5

Solution.

1. We are looking for scalars x
1

and x

2

such that x
1

u
1

+ x

2

u
2

= b. This
translates to the linear system:

x

1

� x

2

= 4
2x

1

� 3x
2

= �2
(2.27)
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Subtracting 2 times the first equation from the second we have the
triangular system:

x

1

� x

2

= 4
x

2

= 10
(2.28)� �

We find x

2

= 10 and x

1

= 4 + 10 = 14. Therefore, 14u
1

+ 10u
2

= b
and hence b is in span{u

1

,u
2

}.

2. We are looking for scalars x
1

and x

2

such that x
1

u
1

+ x

2

u
2

= b. This
translates to the linear system:

x

1

= 1
2x

2

= �4
�2x

1

+ x

2

= �4
(2.29)

In order for the first two equation to be satisfied, we need x

1

= 1 and
x

2

= �2. This pair satisfies the third equation as well, and therefore
it is the unique solution to the system. Therefore, u

1

� 2u
2

= b, and
hence b is in span{u

1

,u
2

}.

3. This is very similar to the previous example. Now the linear system is:

x

1

= 4
2x

2

= �1
�2x

1

+ x

2

= 4
(2.30)

In order for the first two equation to be satisfied, we need x

1

= 4 and
x

2

= �1

2

. This pair does not satisfy the third equation, and therefore
b is not in span{u

1

,u
2

}.
The di↵erence between these last two examples is shown in Figure 2.2.

}

2.2.2 Example. Find a vector in R3 that is not in:

span

8
<

:

2

4
2

�1
4

3

5
,

2

4
0
3

�2

3

5

9
=

; .
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Figure 2.2: The vector b from part 2 of Example 2.2.1 is in span{u
1

,u
2

} but
the vector b from part 3 is not.

Solution. We being by applying elementary row operations on the matrix
whose columns are the vectors in question adjoined with an arbitrary vector

48



in R3 whose components are denoted a, b, c.

2

4
2 0 a

�1 3 b

4 �2 c

3

5 1
2R1)R1

⇠

2

4
1 0 a/2

�1 3 b

4 �2 c

3

5

R1+R2)R2

�4R1+R3)R3

⇠

2

4
1 0 a/2
0 3 b+ a/2
0 �2 c� 2a

3

5

1
3R2)R2

⇠

2

64
1 0 a/2

0 1 1

3

(b+ a/2)

0 �2 c� 2a

3

75

2R2+R3)R3

⇠

2

6
1 0 a/2

0 1 1

3

(b+ a/2)

0 0 c+ 2

3

b� 5

3

a

3

74 5

We see that the corresponding linear system has a solution if and only if
c+ 2

3

b� 5

3

a = 0. Any vector whose components do not satisfy this equation
will therefore not be in the span. For example, taking a = 1, we see that:

2

4
1
0
0

3

5 is not in span

8
<
2

4
2

�1
4

3

5
,

2

4
0
3

�2

3

5

9
=

. (2.31): ;

There are of course infinitely many other possibilities. }

2.2.3 Example. Determine if the following vectors span R2.

u
1

=


3
2

�
, u

2

=


5
3

�

Solution. Ap⇥plying⇤the row operation �2

R

1

3

+ R

2

) R

2

to u
1

u
2

, we
get the matrix 3 5

0 1/9

. This matrix is in echelon form and every row has a�
pivot position. This shows that span u

1

,u
2

= R2 (Theorem 2.8).

⇥ ⇤

{ } }
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2.2.4 Example. Determine if the following vectors span R3.

u
1

=

2

4
2

�2
0

3

5
, u

2

=

2

4
1

�1
1

3

5

Solution. No, two vectors can never span R3 (Theorem 2.9). }

2.2.5 Example. Give an example of a set of vectors that span Rn.

Solution. Consider the vectors e
1

, e
2

, . . . , e
n

in Rn where every component
of e

i

is 0 except the i

th which is 1.

e
1

=

2

6664

1
0
...
0

3

7775
, e

2

=

2

6664

0
1
...
0

3

7775
, e

n

=

2

6664

0
0
...
1

3

7775
(2.32)

These span Rn as we can always write:
2

6664

x

1

x

2

...
x

n

3

7775
= x

1

2

6664

1
0
...
0

3

7775
+ x

2

2

6664

0
1
...
0

3

7775
+ · · ·+ x

n

2

6664

0
0
...
1

3

7775
= x

1

e
1

+ x

2

e
2

+ · · · x
n

e
n

. (2.33)

}

2.2.6 Example. Find all values of h such that the set of vectors {u
1

,u
2

,u
3

}
spans R3.

u
1

=

2

4
1
2

�3

3

5
, u

2

=

2

4
0
h

1

3

5
, u

3

=

2

4
�3
2
1

3

5

Solution. We consider the matrix
⇥
u
1

u
2

u
3

⇤
. This matrix and the

result of applying several elementary row operations are:
2

4
1 0 �3
2 h 2

�3 1 1

3

5 ⇠

2

4
1 0 �3
0 1 �8
0 0 8(h+ 1)

3

5
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The operations we applied are: �2R
1

+R

2

) R

2

, 3R
1

+R

3

) R

3

, R
2

, R

3

,
�hR

2

+ R

3

) R

3

. This matrix is in echelon form. Every row has a pivot
position if and only if h = �1. Hence, span{u

1

,u 3

2

,u
3

} = R if and only if
h = �1 (Theorem 2.8). }

6
6

2.2.7 Example. Find A, x, and b such that the equation Ax = b corre-
sponds to the linear system:

2x
1

+ 3x
2

� 5x
4

= �1
4x

1

+ 7x
3

+ x

4

= 4
3x

2

� x

3

+ 2x
4

= 0

Solution. We have:

A =

2
2 3 0 �5
4 0 7 1
0 3 �1 2

3

, x =

2

6
x

1

x

2

x

3

x

4

3

7
, b =

2
�1
4
0

3

(2.34)4 5 64 75 4 5

2.2.8 Example. Determine if the equation Ax = b has a solution for every
choice of b.

1. A =


1 3

�2 �6

�

2. A =

2
1 0 �2
2 1 2
2 1 3

3

4 5

Solution.

1. This is similar to Example 2.2.3. We adjoin the matrix A with a vector
with components a and b and apply elementary row operations.


1 3 a

�2 �6 b

�
2R1+R2)R2

⇠


1 3 a

0 0 2a+ b

�

}

The equation corresponding to the bottom row does not have a solution
unless 2a + b = 0. Therefore, the system Ax = b does not have a
solution for every b in R2. In other words, the columns of A do not
span R2.
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2. We adjoin the matrix A with a vector with components a, b, and c and
apply elementary row operations.

2

4
1 0 �2 a

2 1 2 b

2 1 3 c

3

5
�2R1+R2)R2

�2R1+R3)R3

⇠

2

4
1 0 �2 a

0 1 6 b� 2a
0 1 7 c� 2a

3

5

�R2+R3)R3

⇠

2

4
1 0 �2 a

0 1 6 b� 2a
0 0 1 c� b

3

5

2R3+R1)R1

�6R3+R2)R2

⇠

2
1 0 0 a� 2b+ 2c
0 1 0 7b� 2a� 6c
0 0 1 c� b

3

4 5

Therefore for any values for a, b, and c we can solve the linear system
Ax = b. The solution is:

x =

2

4
a� 2b+ 2c

7b� 2a� 6c
c� b

3

5 (2.35)

Additionally, this shows that we can write:

(a� 2b+ 2c)

2
1
2
2

3

+ (7b� 2a� 6c)

2
0
1
1

3

+ (c� b)

2
�2
2
3

3

=

2
a

b

c

3

(2.36)4 5 4 5 4 5 4 5

This shows that the columns of A span R3.

}

2.3 Linear Independence

Key Points in This Section

1. A set of vectors {u
1

,u
2

, . . . ,u
m

} in Rn is linearly independent if when-
ever c

1

, c

2

, . . . , c

m

are scalars such that:

c

1

u
1

+ c

2

u
2

+ · · ·+ c

m

u
m

= 0 (2.37)
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then necessarily c

1

= c

2

= · · · = c

m

= 0. In other words, the only
solution to the vector equation:

x

1

u
1

+ x

2

u
2

+ · · ·+ x

m

u
m

= 0 (2.38)

is the trivial solution x

1

= x

2

= · · · = x

m

= 0. Otherwise the set is
said to be linearly dependent.

2. If a set of vectors in Rn contains 0, then the set is linearly dependent
(Theorem 2.13).

3. The set {u
1

,u
2

} is linearly dependent if and only if one of the vectors
is a scalar multiple of the other.

4. If u
1

,u
2

, . . . ,u
m

are vectors in Rn and m > n, then {u
1

,u
2

, . . . ,u
m

}
is linearly dependent (Theorem 2.14).

5. If u
1

,u
2

, . . . ,u
m

are vectors in Rn, then {u
1

,u
2

, . . . ,u
m

} is linearly
dependent if and only if one of the vectors is in the span of the others
(Theorem 2.15).

6. Suppose u
1

,u
2

, . . . ,u
m

are vectors in Rn and let

A = u
1

u
2

· · · u
m

⇠ B

⇥ ⇤

where B is in echelon form. Then

(a) span{u
1

,u
2

, . . . ,u
m

} = Rn exactly when B has a pivot position
in every row, and

(b) {u
1

,u
2

, . . . ,u
m

} is linearly independent exactly when B has a
pivot position in every column.

(Theorem 2.16)

7. A set {u
1

,u , . . . ,u n

2 m

} in R is linearly independent if and only if the
homogeneous linear system Ax = 0 with coe�cient matrix:

A = u
1

u
2

· · · u
m

(2.39)
⇥ ⇤

has a unique solution, the trivial solution x = 0. (Theorem 2.17).
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8. Given a linear system Ax = b is the associated homogeneous linear
system Ax = 0.

9. Matrix–vector multiplication satisfies the distributive property:

A(x+ y) = Ax+ Ay (2.40)

(Theorem 2.18).

10. Let x
p

be a (particular) solution to Ax = b. Then the general solution
to Ax = b is of the form x

g

= x
p

+ x
h

where x
h

is a solution to the
associated homogeneous system Ax = 0 (Theorem 2.19).

11. Suppose a
1

, a
2

, . . . , a
m

and b are vectors in Rn. Then the following
statements are equivalent.

(a) The set {a
1

, a
2

, . . . , a
m

} is linearly independent.

(b) The vector equation x

1

a
1

+ x

2

a
2

+ · · · + x

m

a
m

= b has at most
one solution.

⇥ ⇤
(c) The linear system corresponding to a

1

a
2

· · · a
m

b has at
most one solution.

(d) The equation Ax = b, with A and x as given in (2.25), has at
most one solution.

(Theorem 2.20)

12. The Unifying Theorem – Vers⇥ ion 1: Let S =⇤{a1

, a
2

, . . . , a
n

} be a
set of vectors in Rn and let A = a

1

a
2

· · · a
n

. Then the following
are equivalent:

(a) S spans Rn.

(b) S is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

Notice the number of vectors in S is exactly n.
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Teaching Suggestions

This section introduces the other central notion for a set of vectors, linear
independence. This notion, along with span, play a key part in the remainder
of the course. Students will need to be able to readily translate what these
concepts are and how to test for them in terms of solutions of linear systems
and echelon form of matrices. Contrasting Theorems 2.11 and 2.20 will help
students to see the connections between span and linear independence.

One way to naturally introduce the concept of linear dependence is to
ask the students to construct a set of three vectors in R3 that do not span.
Students will realize that to do so, at least one of the vectors will need to be a
linear combination of the others. In other words, they will need to construct
a linearly dependent set. Along the way, they can probably start to convince
themselves why The Unifying Theorem is true.

Linear independence can be a hard definition for students to grasp at
first glance as it is defined as the absence of nontrivial solutions. Students
can easily understand when something is there, but a definition based on the
concept of something not being there can be di�cult to comprehend unless
they have seen such definitions before.

Again, if the class has some experience with writing proofs, Exercises
55–64 make for excellent problems and practice of proof writing techniques.

Suggested Classroom Examples

2.3.1 Example. Determine if the set of vectors is linearly independent.

1.


1
2

�
,


3

�1

�

2.


1

�1

�
,


2
2

�
,


3
5

�

3.

2

4
1

�1
1

3

5
,

2

4
2

�1
0

3

5
,

2

4
0

�1
2

3

5
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Solution.

1. Applying the row operation �2R
1

+ R

2

) R

2

to [ 1 3

2 1

], we get [ 1 3

0 7

].� �
This matrix is in echelon form and every column has a pivot position
and so the set is linearly independent (Theorem 2.16).

2. Of course by Theorem 2.14 this set is linearly dependent but look at
the homogeneous linear system to write an explicit linear dependence.
The augmented matrix and its reduced echelon form are:


1 2 3 0

�1 2 5 0

�
⇠


1 0 �1 0
0 1 2 0

�

The operations we applied are: R
1

+R

1

2

) R

2

,
4

R

2

) R

2

and �2R
2

+
R

1

) R

1

. Therefore, the general solution to the vector equation:

x

1


1

�1

�
+ x

2


2
2

�
+ x

3


3
5

�
= 0 (2.41)

is:
x

1

= s

1

x

2

= �2s
1

x

3

= s

1

(2.42)

Any nonzero value for s

1

gives a nontrivial solution, for example if
s

1

= 1, then x

1

= 1, x
2

= �2 and x

3

= 1 is a nontrivial solution. This
gives the linear dependence:


1

�1

�
� 2


2
2

�
+


3
5

�
= 0 (2.43)

3. We consider the matrix has the given vectors as columns. This matrix
and the result of the row operations R

1

+ R

2

) R

2

, �R

1

+ R

3

) R

3

and �2R
2

+R

3

) R

3

are:
2

4
1 2 0

�1 �1 �1
1 0 2

3

5 ⇠

2

4
1 2 0
0 1 �1
0 0 0

3

5

The new matrix is in echelon form and the third column does not have
a pivot position, hence the vectors are linearly dependent (Theorem
2.16).
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2.3.2 Example. Determine if the columns of the given matrix are linearly
independent.

A =

2
1 2 �5

�3 6 0
0 1 4

3

4 5

Solution. We put the matrix into echelon form:
2

4
1 2 �5

�3 6 0
0 1 4

3

5
3R1+R2)R2

R2,R3

⇠

2

4
1 2 �5
0 1 4
0 0 �15

3

5

Since every column has a pivot position, the columns of A are linearly inde-
pendent (Theorem 2.16). By The Unifying Theorem, this also implies that
the columns of A span R3 and that the linear system Ax = b has a unique
solution for every b in R3. }

2.3.3 Example. Find the general solution and the solutions to the associ-
ated homogeneous system for:

x

1

+ 3x
2

+ 3x
4

� 5x
5

= 5
x

3

� 6x
4

+ 10x
5

= �7
3x

4

� 4x
5

= 6

Solution. We solved this linear system in Example 1.1.7 and also considered
it in Example 2.1.5. We found the general solution to be (2.11):

x
g

=

2

6666

�1
0
5
2
0

3

7777+ s

1

2

6666

�3
1
0
0
0

3

7777+ s

2

2

6666

1
0
2
4

3

1

3

7777 (2.44)
4 5 4 5 4 5

The solutions to the associated homogeneous linear system are:

x
h

= s

1

2

6666

�3
1
0
0
0

3

7777+ s

2

2

6666

1
0
2
4

3

1

3

7777 (2.45)
4 5 4 5
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2.3.4 Example. Show that the columns of A are linearly independent:

A =

2
1 0 �2
2 1 2
2 1 3

3

4 5

Solution. In the second part of Example 2.2.8, we showed that the linear
system Ax = b has a solution for every b in R3. (In fact, we actually
showed that there is a unique solution.) Hence the columns of A span R3

and therefore by The Unifying Theorem, as the number of columns equals
the number of rows, the columns of A are linearly independent. }

58

Linear Algebra with Applications 2nd Edition Holt Solutions Manual
Full Download: https://testbanklive.com/download/linear-algebra-with-applications-2nd-edition-holt-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

https://testbanklive.com/download/linear-algebra-with-applications-2nd-edition-holt-solutions-manual/

	holtlinearalgebra2e_chapter2_irm.pdf
	Chapter 2 Euclidean Space
	2.1 Vectors
	Key Points in This Section
	Teaching Suggestions
	Suggested Classroom Examples

	2.2 Span
	Key Points in This Section
	Teaching Suggestions
	Suggested Classroom Examples

	2.3 Linear Independence
	Key Points in This Section
	Teaching Suggestions
	Suggested Classroom Examples




