Learning and Memory 1St Edition Eichenbaum Test Bank

Full Download: http://alibabadownload.com/product/learning-and-memory-1st-edition-eichenbaum-test-bank/

Chapter 2

The Neural Bases of Learning and Memory

TRUE	/FALSE	
INUL		

1.	Motor neurons have long axons that send signals specifically to muscles.							
	ANS: T	PTS:	1	DIF:	low	REF:	page 44	
2.	Action potentials can vary from creating a large effect to a small effect.							
	ANS: F	PTS:	1	DIF:	low	REF:	page 46	
3.	Following an action neuron.	potentia	al, the exchange	e of soc	lium ions for po	otassiun	n ions restores the balance in a	
	ANS: T	PTS:	1	DIF:	medium	REF:	page 48	
4.	An EEG measures th	ne single	e firing of a neu	ıron, or	ne at a time.			
	ANS: T	PTS:	1	DIF:	low	REF:	page 49	
5.	When the charge of a potential.	a neuro	n changes from	negati	ve to positive th	ne resul	t is an inhibitory postsynaptic	
	ANS: F	PTS:	1	DIF:	low	REF:	page 51	
6.	Donald Hebb proposed the theory that when neurons are activated they have the potential to form a cell assembly.							
	ANS: T	PTS:	1	DIF:	low	REF:	page 55	
7.	Normally, long-term depression (LTD) occurs when either presynaptic activity or postsynaptic activity occurs alone.						ctivity or postsynaptic activity	
	ANS: T	PTS:	1	DIF:	low	REF:	page 59	
8.	The brain and the sp	inal cor	d are the two m	nain par	ts of the autono	omic ne	rvous system.	
	ANS: F	PTS:	1	DIF:	low	REF:	page 66	
9.	The role of the symp	athetic	nervous system	is to c	alm our bodies	down a	after something stressful.	
	ANS: F	PTS:	1	DIF:	low	REF:	page 67	
10.	The cerebellum is es at the eye.	sential	for conditioned	behavi	ors like blinkin	g in res	sponse to a puff of air directed	
	ANS: T	PTS:	1	DIF:	medium	REF:	page 68	

MULTIPLE CHOICE

1.	are groups of interconnected neurons that work together to represent stimuli, actions, and						
	thought. a. Cells			C	Systems		
	b. Circuits			c. d.	•	S	
	ANS: B	PTS:	1	DIF:	low	REF:	page 41
2.	Farly anatomists cor	nnared i	neural network	s to an i	nterconnected	snider v	web. This idea led to the idea
۷.	of the		iculai network	o to till i		spider	web. This idea led to the idea
	a. reticular theory				neuron doctri		
	b. reticular activati	•		d.	neuronal doct		eory of the brain
	ANS: A	PTS:	1	DIF:	medium	REF:	page 41
3.	Which of the follow Cajal?	ing was	NOT a type of	neuron	described by S	Spanish	anatomist Santiago Ramón y
	a. principal			c.	sensory		
	b. motor			d.	interconnecti	ng	
	ANS: D	PTS:	1	DIF:	low	REF:	page 44
4.	a. Brain cells linke in size.	d with n	nemory decli	ne c.	The number of neurons degra	of connade.	ay decline as we age? ections between the
	b. Blood flow to th age.	e brain i	is restricted as	we d.	Brain cells lir in number.	nked wi	ith memory decline
	ANS: C	PTS:	1	DIF:	medium	REF:	page 45
5.	The synapse consists	s of all o	of the following	g EXCE	PT:		
	a. presynaptic mate			c.	<i>J</i> 1		
	b. postsynaptic mar	terial.		d.	synaptic conn	nector.	
	ANS: D	PTS:	1	DIF:	low	REF:	page 46
6.	Which of the follows a. The charge of the b. Sodium ions flow	e cell is	slightly positive	ve. c.	Potassium ion	ns flow	in and out of the cell. e membrane close.
	ANS: C	PTS:	1	DIF:	high	REF:	page 47
7.	A change of about _ a. 5-10 b. 10-15	m	V in potential i	c.	h to fire a neuro 15-20 20-25	on and	generate an action potential.
	ANS: C	PTS:	1	DIF:	low	REF:	page 47
8.	at the cell body.	al create	ed in a distant o			most li	ikely be when it arrived
	a. small				average	vvda ama	it a agrummed
	b. large				it depends on		
	ANS: A	PTS:	1	DIF:	low	REF:	page 47
9.	Findings by Otto Lo	ewi in n	euronal transm	nission s	upported his th	eory th	at

	nervous system activities b. chemical agents could stimulate nervous system activities				ıs d.	potential action potenti all-or-none pr			
	ANS	S: B	PTS:	1	DIF:	high	REF:	page 49	
10.	posts a.	nhibitory postsyn synaptic potentia sodium; potassiu chloride; sodium	ıl is due m		of		loride	hile an excitatory	
	ANS	S: D	PTS:	1	DIF:	high	REF:	page 50	
11.	a. 1	aine enhances the norepinephrine acetylcholine	e synapt	tic potential for	c.	of the followin serotonin GABA	g neuro	otransmitters?	
	ANS	S: A	PTS:	1	DIF:	low	REF:	page 52	
12.	a. o	rles Sherrington cell assembly reciprocal arc	discove	red the simples	c.	circuit called the reflex arc reciprocal ref			
	ANS	S: C	PTS:	1	DIF:	low	REF:	page 53	
13.	a. 6 b. 1	several hours.	ellular r	esponses last for	or c.	More cells wi action potenti It requires a d	thin the al. lecrease	e assembly reached e in the potential of followed by an	
	ANS	S: D	PTS:	1	DIF:	high	REF:	page 58	
14.	a.	most frequent ex GABA glutamate	citatory	neurotransmit	c.	ne hippocampus norepinephrir dopamine			
	ANS	S: B	PTS:	1	DIF:	low	REF:	page 58	
15.	neur a. i	ium ions in the potrophins, which increase the mag decrease the size	nesium	ion levels		permanently s	sensitiz	potentiation by synthesizing the synapses of more calcium ions	
	ANS	S: C	PTS:	1	DIF:	medium	REF:	page 58	
16.	a. o	quickly finding t	he platf	orm	c.	eventually fin the area	ding th	n the rats ne maze after circling	
		swimming in the	·	-		-		e vicinity of the maze	
	ANS	S: D	PTS:	1	DIF:	medium	REF:	page 62	

a. electrical impulses could stimulate c. action potentials were larger than synaptic

17.	How was long-term potentiation (LTP) affected in genetically modified mice with extra NMDA receptors?								
	a. LTP was delayed.b. LTP was induced more readily	c. LTP did not occur.d. The rate of LTP was normal at first but then it decreased.							
	ANS: B PTS: 1	DIF: medium REF: page 62							
18.	The practice of <i>phrenology</i> was or a. <i>typology</i> b. <i>somatology</i>	ginally called by Francis Gall. c. organology d. somatotyping							
	ANS: C PTS: 1	DIF: low REF: page 64							
19.	Which of the following was not a fa. He used only males.b. He used small samples.	aw of Francis Gall's research? c. His research was subjective. d. He examined the skull, not the brain directly.							
	ANS: A PTS: 1	DIF: low REF: page 64							
20.	a. Left frontal lobe for speech comprehension.	function in the brain include all but which of the following c. Left frontal lobe for spatial reasoning. oduction. d. Right frontal lobe for verbal gestures.	g?						
	ANS: B PTS: 1	DIF: low REF: page 65							
21.	The spinal nerves carry informatio a. central nervous system b. central peripheral nervous syst ANS: C PTS: 1	in and out of the brain via the c. peripheral nervous system d. perinatal nervous system DIF: low REF: page 66							
22.	Key cranial nerves responsible for	he heart, circulatory system, and the diaphragm are located	d in the						
	a. forebrain b. midbrain	c. hindbraind. prefrontal							
	ANS: C PTS: 1	DIF: low REF: page 68							
23.		able to regulate when he was hungry, thirsty, or sleepy. Don's located in the c. thalamus; midbrain d. thalamus; forebrain	amage						
	ANS: B PTS: 1	DIF: high REF: page 68							
24.	According to evolutionary principla. striatum b. thalamus	s, one of the first cortical areas to develop was the c. hypothalamus d. hippocampus	·						
	ANS: D PTS: 1	DIF: medium REF: page 68							
25.	Which of the following is not true a. It contains 4 lobes.	f the cerebral cortex? c. Its neurons are arranged in layers.							

	b. It is the secon hemispheres.	d largest part of the	cerebral d.	It is divided i	nto syn	nmetrical halves.
	ANS: B	PTS: 1	DIF: 1	low	REF:	page 69
26.	If your dog rubs u a. The left pariet b. The left temporary	tal lobe.	c.	rific brain are The right par The right tem	ietal lob	
	ANS: C	PTS: 1	DIF: 1	high	REF:	page 70
27.		matosensory area is that an oncoming c	ar is from your		ponsibl	e for processing information
	ANS: B	PTS: 1	DIF: 1	low	REF:	page 72
28.	After the accident be to thea. auditory b. cerebral		c.	wife's face. motor inferotempor		e damage would most likely
	ANS: D	PTS: 1	DIF: 1	medium	REF:	page 73
29.	Which of the folloa. sensory b. rational ANS: B	owing is NOT one o PTS: 1	c.	motor emotional		of the brain? page 74
30.	The second crania a. optic b. trigeminal	ol nerve is thePTS: 1	c. d.	olfactory vagus medium	REF:	page 74
31.	a. initiate motor sensory inform	emotor cortex is to _ movements with in- nation formation on to the	coming c.			
	ANS: C	PTS: 1	DIF: 1	high	REF:	page 74
32.	What type of beha a. simple motor b. simple sensor		c.	ntal subsysten complex mot complex sens	or tasks	
	ANS: C	PTS: 1	DIF: 1	medium	REF:	page 75
33.	The amygdala wo a. complex moto b. emotional	ould be closely linked or	c.	ype of learnin fine motor familiar objec		
	ANS: B	PTS: 1	DIF: 1	low	REF:	page 80

34. The large prefrontal association cortex is well developed in primates, especially humans and is correlated with:

a. short term memory.

c. emotions.

b. long term memory.

d. intelligence.

ANS: D

PTS: 1

DIF: low

REF: page 78

35. Which of the following would not be a function of the autonomic nervous system?

a. salivation

c. crying

b. sweating

d. respiration

ANS: C

PTS: 1

DIF: low

REF: page 77

ESSAY

1. Describe the biological and electrical changes in the neuron during an action potential.

ANS:

Since an action potential is based on an all-or-none principle, when the synaptic transmission rises above the threshold, the cell fires. When this occurs, sodium molecules flow inside the cell through channels, resulting in a +40mV potential (from the -70mV at resting state). Then additional potassium flows outside of the cell, trying to restore the charge of the cell at -70mV. A cellular pump exchanges sodium for potassium to restore balance of the molecular concentrations.

PTS: 1 REF: page 48

2. Discuss how Otto Loewi's study supported his theory that chemical signals also control neuron activity.

ANS:

Otto Loewi took a live frog heart and bathed it in a neutral solution where it continued to beat for a period of time. Next, he electrically stimulated the heart to make it slow down and removed some of the solution surrounding this heart. Loewi placed the solution from the first heart and placed it into a chamber holding another beating heart. After a few seconds the second heart slowed down with no stimulation by the scientist.

PTS: 1 REF: page 49

3. Explain why functional brain imaging is called modern phrenology. Also describe how an fMRI works.

ANS:

Francis Gall tried to map out faculties that were localized in specific brain areas. Clinical and experimental work, however, did not support his map of faculties. Functional magnetic resonance imaging (fMRI) technology has allowed a deeper look into the activity of specific brain areas while individuals are completing tasks. The fMRI sends out magnetic impulses which cause the iron molecules in the hemoglobin (a primary component of blood) to twist. The degree in which the hemoglobin twists is dependent upon the amount of oxygen in the blood. Brain areas that are more active have more oxygen in them, so these areas can be determined easily from brain areas that are not being activated. Computers pick up these sensor readings from the brain and map out the brain's activities.

PTS: 1 REF: page 65

Learning and Memory 1St Edition Eichenbaum Test Bank

Full Download: http://alibabadownload.com/product/learning-and-memory-1st-edition-eichenbaum-test-bank/

4. Give a general overview of the types of abilities that are regulated by the three main regions of the brain. Start with the most primitive area.

ANS:

The hindbrain is the most primitive brain region. It controls many of the cranial nerves and nuclei that send impulses to and from the spinal cord and cranial nerves. Some of the most basic behaviors, like respiration, sleep and wakefulness, circulation, heart activity, and fine coordination of movement are controlled by this region. There may also be areas responsible for some aspects of language and other cognitive functions housed here. The midbrain has centers for coordinating vision and hearing with movement as well as orienting actions, like following a moving target, and reflexive movements, like freezing and escaping.

The forebrain is at the front of the brain and has two subdivisions with different functions. The lower subarea connects the cerebral cortex and the lower brain area. The thalamus regulates basic survival behaviors, like eating, sex, and sleeping. The pituitary gland is found in the forebrain, and it is the master gland that controls the other glands. Near the surface of the brain is the cerebral cortex, which houses the hippocampus for long term memory and spatial orientation and the amygdala for emotional learning.

PTS: 1 REF: pages 70 and 71

5. Describe the general actions of each of the four functional systems in the brain.

ANS:

The sensory system sends information from the sensory organs to the thalamus for processing. This information initially goes to the primary sensory systems, then to the secondary sensory systems for further processing, and finally on to sensory association areas. In the motor systems, information is organized so that it allows for control and coordination of voluntary movements. The emotional systems mediate emotions and automatic behaviors associated with these emotions. The amygdala is key to the emotional pathways throughout the brain. Last is the cognitive system, which involves the association areas of the cortex and performs the highest level of cognitive processing. One cognitive system connects almost all higher cortical areas and the hippocampus (memory); another focuses on the prefrontal cortex or the area in front of the motor cortex.

PTS: 1 REF: page 77