Introductory Chemistry An Atoms First Approach 1st Edition Burdge Test Bank

Full Download: http://testbanklive.com@dwalgatelintt@uctpreschapistry.ankatpresc-first-approach-1st-edition-burdge-test-banklive.com@dwalgatelintt@uctpreschapistry.ankatpresc-first-approach-1st-edition-burdge-test-banklive.com

- 1. Visible light, radio waves, microwave radiation, infrared, ultraviolet radiation, X-rays, and gamma rays all constitute the electromagnetic spectrum. Which of the following characteristics do all of these kinds of radiation share?
- A. They all have the ability to generate heat in objects.
- B. They all have the same frequencies.
- C. They are all the transmission of energy in the form of waves.
- D. They have equal energies.
- E. They have the same electron spin state.

Accessibility: Keyboard Navigation Bloom's Level: 3. Apply

Difficulty: Medium Gradable: automatic

Subtopic: Electromagnetic Radiation (Wave Properties)

Topic: Quantum Theory and Atomic Structure

- 2. Select the arrangement of electromagnetic radiation which starts with the shortest wavelength and increases to longest wavelength.
- A. radio, infrared, ultraviolet, gamma rays
- B. radio, ultraviolet, infrared, gamma rays
- C. gamma rays, radio, ultraviolet, infrared
- D. gamma rays, infrared, radio, ultraviolet
- E. gamma rays, ultraviolet, infrared, radio

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Hard Gradable: automatic

Subtopic: Electromagnetic Radiation (Wave Properties)
Subtopic: Measurement (SI Units)
Subtopic: Scientific Notation and Significant Figures

Topic: Quantum Theory and Atomic Structure

3. Select the arrangement of electromagnetic radiation which starts with the lowest energy and increases to the greatest energy.

A. radio, infrared, ultraviolet, gamma rays radio, ultraviolet, infrared, gamma rays gamma rays, infrared, radio, ultraviolet gamma rays, ultraviolet, infrared, radio infrared, ultraviolet, radio, gamma rays

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Hard

Gradable: automatic Subtopic: Electromagnetic Radiation (Wave Properties)

- 4. What is the emission of light at only specific wavelengths?
- A. Emission spectra
- B. Hydrogen spectrum
- C. Wave spectra
- D. Limited spectra
- **E.** Line spectra

Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Atomic Spectra (Bohr Model of the Atom)

Subtopic: Electromagnetic Radiation (Wave Properties)
Subtopic: Measurement (SI Units)

Subtopic: Scientific Notation and Significant Figures Topic: Quantum Theory and Atomic Structure

- 5. List the following types of radiation from lowest frequency to highest frequency: microwave, X ray, ultraviolet, visible, and infrared
- A. microwave < infrared < visible < ultraviolet < X ray
- B. X ray < ultraviolet < visible < infrared < microwave
- C.visible < ultraviolet < microwave < X ray < infrared
- D. infrared < X ray < microwave < ultraviolet < visible
- E. infrared < visible < microwave < ultraviolet < X ray

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Easy Gradable: automatic

Subtopic: Electromagnetic Radiation (Wave Properties)
Topic: Quantum Theory and Atomic Structure

6. Which of the following electron transitions would be expected to emit any light in the Bohr model of the atom?

A. n = 1 to n = 3

B. n = 5 to n = 6

C. n = 2 to n = 5

<u>D.</u> n = 4 to n = 3

Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy

Gradable: automatic

Subtopic: Atomic Spectra (Bohr Model of the Atom) Topic: Quantum Theory and Atomic Structure 7. Which of the following electron transitions would be expected to emit any light in the Bohr model of the atom?

A. n = 1 to n = 4B. n = 3 to n = 1C. n = 2 to n = 3D. n = 5 to n = 7

> Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Atomic Spectra (Bohr Model of the Atom) Topic: Quantum Theory and Atomic Structure

8. Which of the following electron transitions would be expected to absorb any light in the Bohr model of the atom?

A. n = 1 to n = 3B. n = 3 to n = 2C. n = 4 to n = 2D. n = 6 to n = 5

> Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Atomic Spectra (Bohr Model of the Atom) Topic: Quantum Theory and Atomic Structure

9. Which of the following electron transitions would be expected to absorb any light in the Bohr model of the atom?

A. n = 7 to n = 2B. n = 5 to n = 6C. n = 1 to n = 3D. n = 3 to n = 5

> Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Atomic Spectra (Bohr Model of the Atom) Topic: Quantum Theory and Atomic Structure

- 10. The size of an atomic orbital is associated with
- $\underline{\mathbf{A}}$ the principal quantum number (n).
- B. the angular momentum quantum number (l).
- C. the magnetic quantum number (m_l) .
- D. the spin quantum number (m_s) .
- E. the angular momentum and magnetic quantum numbers, together.

Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Atomic Theories Subtopic: Quantum Numbers Topic: Components of Matter Topic: Quantum Theory and Atomic Structure

11. Atomic orbitals developed using quantum mechanics	
 A. describe regions of space in which one is most likely to find an electron. B. describe exact paths for electron motion. C. give a description of the atomic structure which is essentially the same at E. allow scientists to calculate an exact volume for the hydrogen atom. F. are in conflict with the Heisenberg uncertainty principle. 	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Medium Gradable: automatic Subtopic: Atomic Theories Subtopic: Quantum Numbers Topic: Components of Matter Topic: Quantum Theory and Atomic Structure
12. The number of orbitals in a <i>d</i> subshell is	
A. 1. B. 2. C. 3. D. 5. E. 7.	
Su	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Easy Gradable: automatic btopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
13. How many orbitals can have the $3p$ description in a given atom?	
A. 1 B. 2 C. 3 D. 5	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand
	Difficulty: Easy Gradable: automatic Subtopic: Quantum Numbers
14. How many orbitals can have the $3d$ description in a given atom? A. 1	Topic: Quantum Theory and Atomic Structure
B. 2 C. 3 <u>D.</u> 5	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy

Gradable: automatic
Subtopic: Quantum Numbers
Topic: Quantum Theory and Atomic Structure

15. How many orbitals can have the 4s description in a given atom?	
A. 1 B. 2 C. 3 D. 5	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Quantum Numbers Topic: Quantum Theory and Atomic Structure
16. How many orbitals can have the 4p description in a given atom?	
A. 1 B. 2 C. 3 D. 4	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Quantum Number; Topic: Quantum Theory and Atomic Structure
17. Determine which sublevel designation is legitimate.	
A. 1f B. 2d C. 3c D. 4s	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Quantum Numbers Topic: Quantum Theory and Atomic Structure
18. Determine which sublevel designation is legitimate.	
A. 1p B. 2p C. 3f D. 4z	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Quantum Numbers Topic: Quantum Theory and Atomic Structure

A. 1 <i>p</i> B. 2 <i>s</i> C. 3 <i>d</i> D. 4 <i>p</i>	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Quantum Numbers
20. Determine which sublevel designation is not legitimate.	Topic: Quantum Theory and Atomic Structure
A. 4s B. 2d C. 3s D. 5p	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand
	Difficulty: Easy Gradable: automatic Subtopic: Quantum Numbers
	Topic: Quantum Theory and Atomic Structure
21. How many orbitals are there in the $n = 4$ level of the H-atom?	
A. 4 B. 6 C. 8 D. 16 E. 18	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Hard
Subtopic: As.	Gradable: automatic signing Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Constitution
22. Each shell (principal energy level) of quantum number <i>n</i> contains <i>n</i> subshells.	Topic: Quantum Theory and Atomic Structure
22. Each shell (principal energy level) of quantum number n contains n subshells.	
TRUE	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Medium Gradable: automatic
	Subtopic: Quantum Numbers Topic: Quantum Theory and Atomic Structure
23. For all atoms of the same element, the 2s orbital is larger than the 1s orbital.	
<u>TRUE</u>	
	Accessibility: Keyboard Navigation
	Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic

19. Determine which sublevel designation is not legitimate.

Subtopic: Quantum Numbers Topic: Quantum Theory and Atomic Structure

24. The orbital diagram for a ground-state nitrogen atom is

	1 <i>s</i>	2s		2p	
A	<u>1 l</u>	<u>1 l</u>	1	1	1
В	<u>1 l</u>	1	<u>1 l</u>	1	
C	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>	1	
D	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>	1	1
E	1 1	1 1	1 1	1 L	1

- <u>**A.**</u> A
- B. B
- C. C
- D. D
- E. E

Bloom's Level: 4. Analyze Difficulty: Easy Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers

Subtopic: Quantum Numbers
Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

25. The orbital diagram for a ground-state oxygen atom is

	1 <i>s</i>	2s		2p	
A	<u>1 l</u>	<u>1 l</u>	<u>1</u>	<u>1</u>	1
В	<u>1 l</u>	<u>1 l</u>	1 1	<u>1 l</u>	
C	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>	1	
D	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>	1	1
E	1	1	1 1	1 1	1

- A. A
- B. B
- C. C
- <u>**D.**</u> D
- E.E

Bloom's Level: 4. Analyze Difficulty: Easy Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers

Topic: Electron Configuration

26. The orbital diagram for a ground-state carbon atom is

	1 <i>s</i>	2s		2p	
A	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>		
В	<u>1 l</u>	1	1	1_	1
C	<u>1 l</u>	<u>1 l</u>	1	1_	1
D	<u>1 l</u>	<u>1 l</u>	1	1_	
E	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>	<u>1 l</u>	1

- A. A
- B. B
- C. C
- <u>**D.**</u> D
- E. E

Bloom's Level: 4. Analyze

Difficulty: Easy

Gradable: automatic

 $Subtopic: Assigning \ Electrons \ to \ Atomic \ Orbitals \ (Aufbau \ Principle)$

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

27. Which ground-state atom has an electron configuration described by the following orbital diagram?

$$[Ar] \frac{1 \downarrow}{4s} \qquad \frac{1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow}{3d} \qquad \frac{1 \downarrow 1 \downarrow}{4p}$$

- A. phosphorus
- B. germanium
- C. selenium
- D. tellurium
- E. potassium

Bloom's Level: 4. Analyze
Difficulty: Fasy

Difficulty: Easy Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

28. Which ground-state atom has an electron configuration described by the following orbital diagram?

$$[Ne] \frac{1 \downarrow}{3s} \qquad \frac{1 \downarrow 1 \downarrow}{3p}$$

- A. phosphorus
- B. nitrogen
- C. arsenic
- D. vanadium
- E. sulfur

Bloom's Level: 4. Analyze

Difficulty: Easy

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Quantum Numbers

Topic: Electron Configuration

29. How many unpaired electrons does a ground-state atom of sulfur have	e?
A. 0 B. 1 <u>C.</u> 2 D. 3	
E. 4	
	Accessibility: Keyboard Navigatio Bloom's Level: 4. Analyz Difficulty: Mediun Gradable: automati Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle Subtopic: Pauli Exclusion Principl Subtopic: Quantum Number Topic: Electron Configuratio Topic: Quantum Theory and Atomic Structur
30. Which element has the following ground-state electron configuration	$? 1s^2 2s^2 2p^6 3s^2$
Na Mg Al Si Ne	
	Accessibility: Keyboard Navigatio Bloom's Level: 4. Analyz Difficulty: Eas Gradable: automati Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle Subtopic: Energy-Level Splitting (Zeff and Shielding Subtopic: Hund's Rul Subtopic: Quantum Number Topic: Electron Configuratio Topic: Quantum Theory and Atomic Structur
31. Which element has the following ground-state electron could be a sum of the following ground-state electron of the sum of the following ground-state electron of the foll	onfiguration?
A. Sn B. Sb C. Pb D. Bi E. Te	
	Accessibility: Keyboard Navigatio Bloom's Level: 4. Analyz Difficulty: Eas Gradable: automati Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle Subtopic: Energy-Level Splitting (Zeff and Shielding Subtopic: Quantum Number Topic: Electron Configuratio Topic: Quantum Theory and Atomic Structur

32. Which element has the following ground-state electron configuration?

 $[Kr]5s^24d^{10}5p^2$

A. Sn

B. Sb

C. Pb

D. Ge

E. Te

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Easy

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

33. The electron configuration of a ground-state Co atom is

 $\underline{\mathbf{A.}}$ [Ar] $4s^23d^7$ B. $1s^22s^22p^63s^23d^9$

C. [Ne] $3s^{2}3d^{7}$

D. $[Ar]4s^13d^5$

E. $[Ar]4s^24d^7$

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Energy-Level Splitting (Zeff and Shielding) Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

34. The electron configuration of a ground-state vanadium atom is

A. $[Ar]4s^24d^3$

B. $[Ar]4s^24p^3$

<u>C.</u> [Ar] $4s^23d^3$

D. [Ar] $3d^5$

E. $[Ar]4s^23d^7$

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

Difficulty: Medium Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers Topic: Electron Configuration

35. The ground-state electron configuration for an atom of indium is

A. $[Kr]5s^24p^64d^5$

B. $[Ar]4s^23d^{10}4p^1$

C. [Ar] $4s^24p^63d^5$

D. [Kr] $5s^25p^64d^5$

E. [Kr] $5s^24d^{10}5p^1$

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

36. The ground-state electron configuration of a calcium atom is

A. [Ne] $3s^2$

B. [Ne] $3s^23p^6$

C. [Ar] $4s^{1}3d^{1}$

<u>D.</u> [Ar] $4s^2$

E. [Ar] $3d^2$

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

Difficulty: Easy

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

37. Select the correct electron configuration for sulfur (Z = 16).

A. $1s^21p^62s^22p^6$

B. $1s^2 2s^2 2p^8 3s^2 3p^4$

C. $1s^2 2s^2 2p^8 3s^2 3p^2$

D. $1s^2 2s^2 2p^6 3s^2 3p^4$

E. $1s^2 2s^2 2p^6 3s^2 3d^4$

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Easy

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

38. Select the correct electron configuration for Te (Z = 52).

A. $[Kr]5s^25p^64d^8$

B. $[Kr]5s^25d^{10}5p^4$

C. $[Kr]5s^24d^{10}5p^6$ D. $[Kr]5s^24f^{14}$

E. [Kr] $5s^24d^{10}5p^4$

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

> Difficulty: Medium Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers Topic: Electron Configuration

A. $1s^22s^22p^93s^23p^94s^24p^2$ B. $1s^22s^22p^63s^23p^64s^23d^{10}4p^2$ C. $1s^22s^22p^63s^23p^2$ D. $1s^22s^23s^23p^5$	
C. $1s^22s^22p^03s^23p^2$ D. $1s^22s^23s^23p^5$	
E. None of the answers is correct.	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
	Subtopic: Energy-Level Splitting (Zeff and Shielding) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
40. The electronic structure $1s^22s^22p^63s^23p^64s^23d^8$ refers to the ground	nd state of
A. Kr.	
B. Ni. C. Fe. D. Pd.	
E. None of these choices is correct.	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Energy-Level Splitting (Zeff and Shielding)
	Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
41. How many electrons are in the $4p$ orbitals of selenium?	
A. 0 B. 2 C. 4 D. 5 E. 6	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
	Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
	Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
42. How many electrons are in the 4 <i>p</i> orbitals of vanadium?	
A. 0 B. 2 C. 4 D. 5 E. 6	
L. U	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium
	Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration
	Topic: Electron Configuration Topic: Ouantum Theory and Atomic Structure

39. What is the correct electron configuration for a germanium (Ge) atom?

43. How many electrons are in the 4 <i>d</i> orbitals of Tc?	
A. 1	
B. 2	
C. 3	
D. 4 <u>E.</u> 5	
<u></u>	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
	Difficulty: Medium Gradable: automatic
	Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers
	Topic: Electron Configuration
	Topic: Quantum Theory and Atomic Structure
44. How many electrons are there in the 2^{nd} principal energy level ($n =$	2) of a phosphorus atom?
A. 3	
B. 5 C. 6	
<u>D.</u> 8	
E. 10	
	Accessibility: Keyboard Navigation
	Bloom's Level: 4. Analyze Difficulty: Medium
	Gradable: automatic
	Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers
	Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
· ·	
45 How many electrons are there in the 3^{10} principal energy level (n =	3) of a phosphorus atom?
45. How many electrons are there in the 3^{rd} principal energy level ($n =$	3) of a phosphorus atom?
A. 3	3) of a phosphorus atom?
A. 3	3) of a phosphorus atom?
A. 3 <u>B.</u> 5 C. 6	3) of a phosphorus atom?
A. 3	3) of a phosphorus atom?
A. 3 <u>B.</u> 5 C. 6 D. 8	3) of a phosphorus atom? Accessibility: Keyboard Navigation
A. 3 <u>B.</u> 5 C. 6 D. 8	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
A. 3 <u>B.</u> 5 C. 6 D. 8	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic
A. 3 <u>B.</u> 5 C. 6 D. 8	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers
A. 3 <u>B.</u> 5 C. 6 D. 8	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration
A. 3 <u>B.</u> 5 C. 6 D. 8 E. 10	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
A. 3 <u>B.</u> 5 C. 6 D. 8	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^2 2s^2 2p$ Mn Ca	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn Ca K	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^2 2s^2 2p$ Mn Ca	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn Ca K Cr	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure 63s ² 3p ⁶ 4s ¹ 3d ⁵ ? Accessibility: Keyboard Navigation
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn Ca K Cr	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure 63s ² 3p ⁶ 4s ¹ 3d ⁵ ? Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn Ca K Cr	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure 63s ² 3p ⁶ 4s ¹ 3d ⁵ ? Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn Ca K Cr	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure 63s ² 3p ⁶ 4s ¹ 3d ⁵ ? Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic
A. 3 B. 5 C. 6 D. 8 E. 10 46. What element is represented by the electron configuration $1s^22s^22p$ Mn Ca K Cr	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure 63s ² 3p ⁶ 4s ¹ 3d ⁵ ? Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Energy-Level Splitting (Zeff and Shielding)

47. What element is represented by the electron configuration $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^14d^{10}$?

<u>A.</u> Ag

B. Rb

C. Cd

D. Sr

E. Cu

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

om's Level: 4. Analyze
Difficulty: Medium

Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers Topic: Electron Configuration Topic: Quantum Theory and Atomic Structure

48. What is the electron configuration for tungsten?

A. $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^6$

B. $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^14f^{14}5d^5$

 $\underline{\mathbf{C.}}\ 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^4$

D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^7$

E. $1s^22s^22p^63s^23p^54s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^7$

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

49. What is the electron configuration for silicon?

A. $1s^22s^22p^63s^13p^3$

B. $1s^22s^22p^63s^23p^2$

C. $1s^2 2s^2 2p^6 3s^4$

D. $1s^2 2s^2 2p^6 3p^4$

E. $1s^22s^22p^63s^23p^3$

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Easy

Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Quantum Numbers Topic: Electron Configuration

- 50. What is the electron configuration for bromine?
- A. $1s^22s^22p^63s^23p^64s^14d^{10}4p^6$
- B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^{10} 4p^5$
- C. $1s^22s^22p^63s^23p^64s^13d^{10}4p^6$
- D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4$
- **E.** $1s^22s^22p^63s^23p^64s^23d^{10}4p^5$

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

- 51. Which of the following elements has the largest number of unpaired electrons in the ground state?
- A. K
- <u>**B.**</u> V
- C. S
- D. Si
- E. Cl

Accessibility: Keyboard Navigation

Bloom's Level: 4. Analyze Difficulty: Hard

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Diamagnetism and Paramagnetism

Subtopic: Energy-Level Splitting (Zeff and Shielding)

Subtopic: Hund's Rule

Subtopic: Quantum Numbers

Topic: Electron Configuration

Topic: Quantum Theory and Atomic Structure

- 52. The general electron configuration for atoms of all elements in Group 5A is
- A. ns^2np^6 .

- B. ns^2np^5 . C. ns^2np^4 . **D.** ns^2np^3 .
- $\frac{\mathbf{E}}{\mathbf{E}} \cdot ns^2 np^1$.

Accessibility: Keyboard Navigation

Bloom's Level: 3. Apply

Difficulty: Easy Gradable: automatic

Subtopic: Elements and the Periodic Table

Subtopic: Periodic Classification of the Elements

Topic: Chemical Periodicity

Topic: Components of Matter

53. Which of these choices is the general electron configuration for the outermost electrons of elements in the alkaline earth group?

A.
$$ns^1$$
B. ns^2
C. ns^2np^4
D. ns^2np
E. ns^2np^6 $(n-1)d^6$

Accessibility: Keyboard Navigation Bloom's Level: 3. Apply

Difficulty: Medium Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Periodic Classification of the Elements Topic: Chemical Periodicity

Topic: Chemical Periodicity
Topic: Electron Configuration

- 54. The general electron configuration for atoms of the halogen group is
- A. ns^2np^6 . **B.** ns^2np^5 . C. $ns^2np^6 (n-1)d^7$. D. ns^1 . E. ns^2np^7 .

Accessibility: Keyboard Navigation

Bloom's Level: 3. Apply Difficulty: Easy

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Periodic Classification of the Elements Topic: Chemical Periodicity Topic: Electron Configuration

- 55. The general electron configuration for noble gas atoms is
- A. ns^2np^6 .
 B. ns^2np^5 .
 C. ns^2np^4 .
 D. ns^2np^3 .
 E. ns^2 .

Accessibility: Keyboard Navigation

Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Periodic Classification of the Elements
Tanic: Chamical Pariodicity

Topic: Chemical Periodicity
Topic: Electron Configuration

- 56. Each of the noble gases has a completely filled p subshell except for which one?
- A. Xenon
- B. Neon
- C. Radon
- D. Argon
- E. Helium

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate

Difficulty: Medium Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Subtopic: Periodic Classification of the Elements Topic: Chemical Periodicity Topic: Electron Configuration

A. 2A	
B. 3A	
C. 4A	
D. 5A	
E. 8A	
	Accomilities Vaule and Maria ation
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
	Difficulty: Easy
	Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
	Subtopic: Periodic Classification of the Elements
	Topic: Chemical Periodicity Topic: Electron Configuration
58. In what group of the periodic table is the element with the elec	etron configuration [Ar] $4s^23d^{10}4p^3$?
A. 1A	
B. 2A	
C. 3A	
D. 4A	
E. 5A	
	Accessibility: Keyboard Navigation
	Bloom's Level: 4. Analyze
	Difficulty: Medium
	Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
	Subtopic: Periodic Classification of the Elements
	Topic: Chemical Periodicity Topic: Electron Configuration
	•
59. Consider the element with the electron configuration [Kr] $5s^24$	d^{\prime} . This element is
A. a halogen.	
A. a halogen. B. a transition metal.	
C. a nonmetal.	
D. an actinide element.	
E. a noble gas.	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
	Difficulty: Medium
	Gradable: automatic
	Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Periodic Classification of the Elements
	Subtopic: Properties of Transition Metals
	Topic: Chemical Periodicity Topic: Electron Configuration
	Topic: Transition Metals and Coordination Compounds

57. An element with the general electron configuration for its outermost electrons of ns^2np^1 would be in which

element group?

60. Consider the element with the electron configuration [Kr] $5s^24d^{10}$ 5	$5p^5$. This element is
A. a halogen.	
B. a transition metal.	
C. an alkali metal.	
D. an actinide element. E. a noble gas.	
	Accessibility: Keyboard Navigation
	Bloom's Level: 4. Analyze Difficulty: Medium
	Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
	Subtopic: Periodic Classification of the Elements
	Topic: Chemical Periodicity Topic: Electron Configuration
61. Consider the element with the electron configuration [Xe] $6s^24f^7$.	This element is
A. a halogen.	
B. a lanthanide element. C. a nonmetal.	
D. an actinide element.	
E. a noble gas.	
	Accessibility: Keyboard Navigation
	Bloom's Level: 4. Analyze
	Difficulty: Medium Gradable: automatic
	Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Periodic Classification of the Elements
	Topic: Chemical Periodicity Topic: Electron Configuration
62. How many <i>valence electrons</i> does a carbon atom have?	
A. 1	
B. 2	
C. 3	
<u>D.</u> 4 E. 6	
	Accessibility: Keyboard Navigation
	Bloom's Level: 4. Analyze
	Difficulty: Easy Gradable: automatic
	Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Periodic Classification of the Elements
	Topic: Chemical Periodicity Topic: Electron Configuration
63. How many <i>valence electrons</i> does a tin (Sn) atom have?	Topic. Liection Configuration
A. 2	
<u>B.</u> 4	
C. 14	
D. 36	
E. 50	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
	Difficulty: Medium
	Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)
	Subtopic: Periodic Classification of the Elements Topic: Chemical Periodicity
	Topic: Chemical Periodicity Topic: Electron Configuration

64. An element with the electron configuration [noble gas] $ns^2(n-1)d^2$	has valence electrons.
A. 2 B. 6 C. 8 D. 10	
E. None of these choices is correct.	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Periodic Classification of the Elements Topic: Chemical Periodicity Topic: Electron Configuration
65. An element with the electron configuration [noble gas] $ns^2(n-1)d$ valence electrons.	
A. 2 B. 3 C. 5 D. 10 E. 15	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Periodic Classification of the Elements Topic: Chemical Periodicity Topic: Electron Configuration
66. How does atomic radius change as you move across the periodic ta	able?
A. Atomic radius decreases moving from left to right across a period a B. Atomic radius increases moving left to right across a period and de C. Smaller nuclear charge lowers energy; more electrons in an orbital D. Atomic radius increases diagonally across the periodic table. E. None of the answers is correct.	creases from top to bottom.
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
67. Which of these atoms has the smallest radius?	
A. Al B. P C. As D. Te E. Na	Accessibility: Keyboard Navigation
	Bloom's Level: 5. Evaluate Difficulty: Medium

Subtopic: Trends in Physical Properties (Atomic Radius, Ionization
Energy, Ionic Radius, Electron Affinity)
Topic: Chemical Periodicity

68. Which of these atoms has the largest radius?	
A. B <u>B.</u> Ga C. Br D. Si E. Cl	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
69. Which of the elements listed below has the greatest atomic radius?	
A. B B. Al C. S D. P E. Si	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
70. Which one of these ions has the smallest radius?	
A. Cl ⁻ B. K ⁺ C. S ²⁻ D. Na ⁺ E.O ²⁻	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Hard Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
71. Arrange P, S, and O in order of increasing atomic radius.	
A. $S < O < P$ B. $P < S < O$ C. $O < S < P$ D. $O < P < S$ E. The answer cannot be determined from the data given.	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium Graduble: automatic

Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity)

Topic: Chemical Periodicity

72. Arrange these ions in order of increasing ionic radius: K⁺, P³⁻, S²⁻, Cl⁻.

$$\underline{\mathbf{A.}} K^{+} < Cl^{-} < S^{2-} < P^{3-}$$

$$B.K^{^{+}}\!<\!P^{3-}\!\!<\!S^{2-}\!<\!Cl^{^{-}}$$

C.
$$P^{3-} < S^{2-} < Cl^{-} < K^{+}$$

D.
$$Cl^- < S^{2-} < P^{3-} < K^+$$

E.
$$Cl^- < S^{2-} < K^+ < P^{3-}$$

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Hard

Gradable: automatic

Subtopic: Trends in Physical Properties (Atomic Radius, Ionization

Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity

73. Which of the following elements has the largest atomic size?

- A. S
- B. Ca
- <u>C.</u> Ba
- D. Po
- E. Rn

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium

Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization

Energy, Ionic Radius, Electron Affinity)

Topic: Chemical Periodicity

74. Which of the following elements has the smallest atomic size?

- A. Na
- **B.** Ar
- C. K
- D. Ca
- E. Kr

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate

> Difficulty: Medium Gradable: automatic

Subtopic: Trends in Physical Properties (Atomic Radius, Ionization

Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity

75. Select the element that will lose an electron most easily, based on the periodic trend.

- A. Li
- B. Na
- <u>C.</u> K D. He

Accessibility: Keyboard Navigation Bloom's Level: 3. Apply

Difficulty: Medium Gradable: automatic

Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity)

Topic: Chemical Periodicity

76. Select the element that will lose an electron most easily, based on the	e periodic trend.
<u>A.</u> Na B. Mg C. Ar D. P	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Medium
	Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
77. Select the element that will gain an electron most easily, based on the	e periodic trend.
A. Ca B. Mg C. O D. P	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Medium Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization
	Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
78. Select the element that will gain an electron most easily, based on the	e periodic trend.
A. Rb B. Al C. S D. Na	
	Accessibility: Keyboard Navigation
	Bloom's Level: 3. Apply Difficulty: Medium
	Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
79. Which of these elements has the greatest metallic character?	
A. Br B. F C. Ge D. Mn <u>E.</u> Sc	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium
	Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity

80. Which of these elements has the greatest metallic character?	
A. Br B. Se C. Ni D. As E. Si	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate
	Difficulty: Medium Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
81. Select the element with the greatest metallic character.	
A. Li B. Ca C. Al D. Pb E. Cs	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate
	Difficulty: Medium Gradable: automatic Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
82. Select the element with the least metallic character.	, ,
A. Sn B. Sr C. Tl D. Ge E. Ga	
	Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium Gradable: automatic
	Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity) Topic: Chemical Periodicity
83. Using the periodic table, predict the charge on the common ion of call	
A. +1 <u>B.</u> +2 C1 D2	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic

Subtopic: Electron Configurations of Cations and Anions Topic: Electron Configuration

<u>D.</u> –2	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Electron Configurations of Cations and Anions Topic: Electron Configuration
85. Using the periodic table, predict the charge on the common ion of rubidium.	
<u>A.</u> +1 B. +2 C1 D2	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze
	Difficulty: Medium Gradable: automatic Subtopic: Electron Configurations of Cations and Anions Topic: Electron Configuration
86. Using the periodic table, predict the charge on the common ion of bromine.	
A. +1 B. +2 <u>C.</u> -1 D2	
	Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium
	Gradable: automatic Subtopic: Electron Configurations of Cations and Anions Topic: Electron Configuration
87. The Lewis dot symbol consists of the symbol for the element surround represent?	ded by dot(s). What does the symbol
A. Electron configuration B. Valence electrons C. Atomic number D. Atomic mass E. Nucleus and core electrons	
	Accessibility: Keyboard Navigation
	Bloom's Level: 2. Understand Difficulty: Medium
	Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures

84. Using the periodic table, predict the charge on the common ion of selenium.

A. +1 B. +2 C. -1

Topic: Chemical Bonding Topic: Molecular Shape

88. The Lewis dot symbol consists of the symbol for the element surrounded by dot(s) represent?	. What does the dot or dots
A. Electron configuration B. Valence electrons C. Atomic number D. Atomic mass E. Core electrons	
	Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape
89. How many dots does the Lewis dot symbol for argon have around it?	
A. 1 B. 2 C. 4 D. 6 <u>E.</u> 8	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape
90. How many dots does the Lewis dot symbol for sodium have around it?	
A. 1 B. 2 C. 0 D. 3 E. 7	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape
91. How many dots does the Lewis dot symbol for magnesium have around it?	
A. 1 B. 2 C. 0 D. 3 E. 7	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape

92. How many dots does the Lewis dot symbol for chlorine have around it?	
A. 1 B. 2 C. 5 D. 7 E. 17	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape
93. How many dots does the Lewis dot symbol for carbon have around it?	
A. 4 B. 2 C. 6 D. 3 E. 7	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape
94. How many dots does the Lewis dot symbol for oxygen have around it?	
A. 4 B. 2 C. 6 D. 3 E. 7	
	Accessibility: Keyboard Navigation Bloom's Level: 3. Apply Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape

95. The Lewis dot symbol for the a lead atom is

- A. Pb:
- в. **Р**b.

Bloom's Level: 4. Analyze Difficulty: Easy Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape

96. The Lewis dot symbol for the S^{2-} ion is

- A. :S:
- <u>B.</u> [∷∷:]_{2−}
- D. \$—²⁻ E. : \$—

Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape

97. The Lewis dot symbol for the chloride ion is

- A. : Cl.
- <u>B.</u> [: :::]_
- C. [: C]
- D. [: a:]
- E. Cl

Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding

Topic: Molecular Shape

98. The Lewis dot symbol for the calcium ion is

- A. $\left[: Ca:\right]^{2+}$
- В. —Са—
- C. Ca: 2+
- **<u>D.</u>** Ca²⁺
- E. Ca

Bloom's Level: 4. Analyze
Difficulty: Medium
Gradable: automatic
Subtopic: Lewis Dot Symbols
Subtopic: Writing Lewis Dot Structures
Topic: Chemical Bonding
Topic: Molecular Shape

A Fr.	
B. : Te:	
<u>C.</u> . Ra.	
D Pb.	
E <i>He</i> .	
	Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures Topic: Chemical Bonding Topic: Molecular Shape
100. Select the element whose Lewis symbol is correct.	
A. •Ga•	
<u>B.</u> •Al•	
C. Al•	
D. • Tl •	
•	
	Bloom's Level: 4. Analyze Difficulty: Medium

Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic Subtopic: Lewis Dot Symbols Subtopic: Writing Lewis Dot Structures

Topic: Chemical Bonding Topic: Molecular Shape

101. A magnesium ion, Mg²⁺, has

99. Select the element whose Lewis symbol is correct.

A. 12 protons and 13 electrons.

B. 24 protons and 26 electrons.

C. 12 protons and 10 electrons.

D. 24 protons and 22 electrons.

E. 12 protons and 14 electrons.

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium Gradable: automatic

Subtopic: Electron Configurations of Cations and Anions

Subtopic: Structure of the Atom Topic: Components of Matter Topic: Electron Configuration

102. An aluminum ion, Al³⁺, has

- A. 13 protons and 13 electrons.
- B. 27 protons and 24 electrons.
- C. 16 protons and 13 electrons.
- **D.** 13 protons and 10 electrons.
- E. 10 protons and 13 electrons.

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze Difficulty: Medium

Gradable: automatic

Subtopic: Electron Configurations of Cations and Anions

Subtopic: Structure of the Atom Topic: Components of Matter Topic: Electron Configuration

103. An oxide ion, O²⁻, has

- A. 8 protons and 10 electrons.
- B. 10 protons and 8 electrons.
- C. 8 protons and 9 electrons.
- D. 8 protons and 7 electrons.
- E. 10 protons and 7 electrons.

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

Difficulty: Medium Gradable: automatic

Subtopic: Electron Configurations of Cations and Anions

Subtopic: Structure of the Atom Topic: Components of Matter Topic: Electron Configuration

104. A sulfide ion, S²⁻, has

- A. 16 protons and 16 electrons.
- B. 32 protons and 16 electrons.
- C. 16 protons and 14 electrons.
- **D.** 16 protons and 18 electrons.
- E. 32 protons and 18 electrons.

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

Difficulty: Medium Gradable: automatic

Subtopic: Electron Configurations of Cations and Anions

Subtopic: Structure of the Atom Topic: Components of Matter Topic: Electron Configuration

105. How many protons and electrons are present in one Br ion?

A. 35 protons, 35 electrons

B. 80 protons, 81 electrons

C. 35 protons, 34 electrons

D. 35 protons, 36 electrons

E. 80 protons, 34 electrons

Accessibility: Keyboard Navigation Bloom's Level: 4. Analyze

> Difficulty: Medium Gradable: automatic

Subtopic: Electron Configurations of Cations and Anions

Subtopic: Structure of the Atom Topic: Components of Matter Topic: Electron Configuration

106. An isoelectronic series is

A. a series that has two or more species that have identical nuclear charges, but have different electron configurations.

B. a series that has the same ionization potentials.

C. a series that can have only up to three species and have similar electron configuration and similar nuclear charges.

D. a series that has two or more species that have identical electron configurations, but different nuclear charges.

E. a series that has the same nuclear charge.

Accessibility: Keyboard Navigation Bloom's Level: 2. Understand Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)

Topic: Electron Configuration

107. Which of these species make an isoelectronic pair: Cl⁻, O²⁻, F, Ca²⁺, Fe³⁺?

A. Ca^{2+} and Fe^{3+} B. O^{2-} and F

C. F and Cl

 $\underline{\mathbf{D}}_{\cdot}$ Cl^{-} and Ca^{2+}

E. None of the above species are part of an isoelectronic series.

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Electron Configurations of Cations and Anions

Topic: Electron Configuration

108. Which of these pairs consists of *isoelectronic* species?

A. Mn²⁺ and Ar B. Zn²⁺ and Cu²⁺ C. Na⁺ and K⁺

D. Cl and S

E. K⁺ and Cl⁻

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate

Difficulty: Medium Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Electron Configurations of Cations and Anions

Topic: Electron Configuration

109. Which ion is isoelectronic with Ar?

A. Fe²⁺

B. F C. Br

D. Ga³⁺

E. Ca²⁺

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Electron Configurations of Cations and Anions

Topic: Electron Configuration

110. Which one of these ions is *not* isoelectronic with Kr?

 $\frac{\mathbf{A.}}{\mathrm{B.}} \mathrm{As}^{3+}$

C. Rb⁺ D. Sr²⁺

E. Br

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Electron Configurations of Cations and Anions

Topic: Electron Configuration

- 111. Which of these choices is the electron configuration for the aluminum ion?
- A. $1s^22s^22p^63s^2$
- B. $1s^22s^22p^63s^23p^2$
- C. $1s^22s^22p^63s^23p^1$
- **<u>D.</u>** $1s^22s^22p^6$
- E. $1s^2 2s^2 2p^6 3s^2 3p^4$

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate

Difficulty: Hard Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Electron Configurations of Cations and Anions

Topic: Electron Configuration

- 112. Which of these choices is the electron configuration for the chloride ion?
- A. [Ne] $3s^23p^4$
- B. [Ne] $3s^23p^7$
- <u>C.</u> [Ar]
- D. [Ar]4s1
- E. [Ne] $3s^23p^5$

Accessibility: Keyboard Navigation Bloom's Level: 5. Evaluate Difficulty: Medium

Gradable: automatic

Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle) Subtopic: Electron Configurations of Cations and Anions

Topic: Electron Configuration

Introductory Chemistry An Atoms First Approach 1st Edition Burdge Test Bank

Full Download: http://testbanklive.com/apyrload/12roffestryBhankstrSunatoma first-approach-1st-edition-burdge-test-banklive.com/apyrload/12roffestryBhankstrSunatoma first-approach-1st-edition-burdge-test-bankstryBhankst

<u>Category</u>	<u># of</u> Questions
Accessibility: Keyboard Navigation	101
Bloom's Level: 2. Understand	18
Bloom's Level: 3. Apply	19
Bloom's Level: 4. Analyze	53
Bloom's Level: 5. Evaluate	22
Difficulty: Easy	42
Difficulty: Hard	7
Difficulty: Medium	63
Gradable: automatic	112
Subtopic: Assigning Electrons to Atomic Orbitals (Aufbau Principle)	50
Subtopic: Atomic Spectra (Bohr Model of the Atom)	5
Subtopic: Atomic Theories	2
Subtopic: Diamagnetism and Paramagnetism	1
Subtopic: Electromagnetic Radiation (Wave Properties)	5
Subtopic: Electron Configurations of Cations and Anions	15
Subtopic: Elements and the Periodic Table	1
Subtopic: Energy-Level Splitting (Z _{eff} and Shielding)	14
Subtopic: Hund's Rule	2
Subtopic: Lewis Dot Symbols	14
Subtopic: Measurement (SI Units)	2
Subtopic: Pauli Exclusion Principle	1
Subtopic: Periodic Classification of the Elements	14
Subtopic: Properties of Transition Metals	1
Subtopic: Quantum Numbers	42
Subtopic: Scientific Notation and Significant Figures	2
Subtopic: Structure of the Atom	5
Subtopic: Trends in Physical Properties (Atomic Radius, Ionization Energy, Ionic Radius, Electron Affinity)	17
Subtopic: Writing Lewis Dot Structures	14
Topic: Chemical Bonding	14
Topic: Chemical Periodicity	31
Topic: Components of Matter	8
Topic: Electron Configuration	59
Topic: Molecular Shape	14
Topic: Quantum Theory and Atomic Structure	51
Topic: Transition Metals and Coordination Compounds	1