
Chapter 2: Database System Concepts and Architecture

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

1

CHAPTER 2: DATABASE SYSTEM CONCEPTS AND ARCHITECTURE

Answers to Selected Exercises

2.12 - Think of different users for the database of Figure 1.2. What type of applications would
each user need? To which user category would each belong and what type of interface
would they need?

Answer:

(a) Registration Office User: They can enter data that reflect the registration of students in
sections of courses, and later enter the grades of the students. Applications can include:
- Register a student in a section of a course
- Check whether a student who is registered in a course has the appropriate prerequisite
courses
- Drop a student from a section of a course
- Add a student to a section of a course
- Enter the student grades for a section
Application programmers can write a number of canned transactions for the registration
office end-users, providing them with either forms and menus, or with a parametric interface.

(b) Admissions Office User: The main application is to enter newly accepted students into the
database. Can use the same type of interfaces as (a).

(c) Transcripts Office User: The main application is to print student transcripts.
Application programmers can write a canned transaction using a report generator utility to
print the transcript of a student in a prescribed format. The particular student can be
identified by name or social security number. Another application would be to generate grade
slips at the end of each semester for all students who have completed courses during that
semester. Again, this application could be programmed using a report generator utility.

2.13 - No solution provided.

2.14 - if you were designing a Web-based system to make airline reservations and to sell
airline tickets, which DBMS Architecture would you choose from Section 2.5? Why? Why
would the other architectures not be a good choice?

Answer:

2.5.4 Three-Tier Client/Server Architecture for Web Application is the best choice. The Client
consists of Web User Interface. The Web Server contains the application logic which
includes all the rules and regulations related to the reservation process and the issue of
tickets; the Database Server contains the DBMS.

2.5.1 Centralized DBMS Architecture would not work since the user interface and database
server are on different machines for a web-based system.

2.5.2 Basic Client/Server Architecture and 2.5.3 Two-Tier Client/Server Architecture would
work if the Business Logic can reside on server other than the DBMS Server. In general, if
the business logic was on the DBMS Server, it will put an excessive burden on the server. If
the business logic were to reside on the web client, it will burden the communication network
as well a possibly thin client.

2.15 - Consider Figure 2.1. In addition to constraints relating the values of columns in one
table to columns in another table, there are also constraints that impose restrictions on

Fundamentals of Database Systems 7th Edition Elmasri Solutions Manual
Full Download: http://alibabadownload.com/product/fundamentals-of-database-systems-7th-edition-elmasri-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/fundamentals-of-database-systems-7th-edition-elmasri-solutions-manual/

Chapter 2: Database System Concepts and Architecture

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

2

values in a column or a combination of columns within a table. One such constraint forces
that a column or a group of columns must be unique across all rows in the table. For
example, in the STUDENT table, the StudentNumber column must be unique (to prevent two
different students from having the same StudentNumber). Identify the column or the group
of columns in the other tables that must be unique across all rows in the table?

Answer:

Table Column(s)

COURSE CourseNumber
Since this contains the combination of the department and the number
that must be unique within the department. Note we will overlook the
fact this does not accommodate a department from offering several
“Special Topics” course with the same CourseNumber but different
titles. We could make this a combination of CourseNumber and
CourseName, but this is more succeptible to someone mistyping while
entering data.

PREREQUISITE The combination of CourseNumber and PrerequisiteNumber

SECTION SectionIdentifier
We assume that no two sections can have the same SectionIdentifier.
If we were to consider that SectionIdentifier is unique only within a
given course offered in a given term (such as section 2 of CS101)
then the answer changes to the combination of SectionIdentifier,
CourseNumber, Semester, and Year.

GRADE_REPORT StudentNumber and SectionIdentifier
As per assumption stated in SECTION, the SectionIdentifier will be
different if a student takes the same course or a different course in
another term.

Fundamentals of Database Systems

Laboratory Manual1

Rajshekhar Sunderraman

Georgia State University

August 2010

1 To accompany Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Addison-Wesley, 2010.

 2

Preface
This laboratory manual accompanies the popular database textbook Elmasri and Navathe,
Fundamentals of Database Systems, 6th Edition, Addison-Wesley, 2010. It provides supplemental
materials to enhance the practical coverage of concepts in an introductory database systems course.
The material presented in this laboratory manual complement many of the chapters of the
Elmasri/Navathe text typically covered in most introductory database systems courses.

Chapter Mappings

The laboratory manual consists of 8 chapters and the following table shows the mapping to the
chapters in the Elmasri/Navathe textbook:

Laboratory Manual Chapter Elmasri/Navathe 6th Edition Chapter(s)
Chapter 1 Chapters 7, 8, and 9
Chapter 2 Chapters 3, 6, and 26
Chapter 3 Chapters 4, 5, and 13
Chapter 4 Chapters 4, 5, and 14
Chapter 5 Chapters 15 and 16
Chapter 6 Chapter 11
Chapter 7 Chapter 12
Chapter 8 Chapters 13 and 14

Chapter 1 presents ERWin, a popular data modeling software that allows database designers to
represent Entity-Relationship diagrams and automatically generate relational SQL code to create
the database in one of several commercial relational database management systems such as Oracle
or Microsoft SQLServer. The material presented in this chapter is tutorial in nature and covers the
COMPANY database design of the Elmasri/Navathe text in detail.

Chapter 2 presents three interpreters that can be used to execute queries in Relational Algebra,
Domain Relational Calculus, and Datalog. These interpreters are part of a Java package that
includes a rudimentary database engine capable of storing relations and able to perform basic
relational algebraic operations on these relations. It is hoped that these interpreters will allow the
student to get a better understanding of abstract query languages.

Chapter 3 presents techniques to interact and program with Oracle database management system.
A popular data-loading tool for Oracle databases called SQL Loader is introduced and the
COMPANY database of the Elmasri/Navathe text is extended with additional data to make it more
interesting to program with. Programming applications that access Oracle databases is then
introduced in Java using the JDBC interface. Several non-trivial example programs are discussed.

 3

Chapter 4 covers MySQL database management system, a popular open source database system
that is increasing used by small and medium sized organizations. Programming Web applications
in PhP that accesses MySQL databases is introduced with a complete database browser application
for the COMPANY database as well as a complete Online Address Book application.

Chapter 5 introduces a Prolog-based toolkit for relational database design. The toolkit, called
Database Designer (DBD), allows the student to work with numerous concepts and algorithms that
deal with functional dependency theory and data normalization. The student may use DBD to
verify answers to many questions related to functional dependency theory and normalization
algorithms.

Chapter 6 presents programming with a popular open source Object-Oriented Database
Management system, db4o. Creating and populating objects in db4o is covered as well various
methods to query and retrieve data from the object-oriented database is introduced. Db4o supports
various object-oriented programming interfaces, but the Java interface is covered in the lab
manual.

Chapter 7 presents XML and its related technologies. Query languages XPath and XQuery are
covered as well as schema specification language XML Schema. Numerous examples are
presented including a complete specification of the company database in XML along with a XML
Schema.

Chapter 8 presents several semester-long projects for students in introductory database courses to
complete. These projects may be implemented in Java, PhP or any other favorite programming
language and may access Oracle, MySQL or any other relational database management system.

Code

The laboratory manual comes with all the code and data presented in the different chapters. The
software for the relational query interpreters as well as the database designer (DBD) also
accompanies the laboratory manual.

Software

The software systems discussed and used in the laboratory manual are ERWin from Computer
Associates, Oracle DBMS from Oracle, and MySQL, PhP, db4o, and SWI-Prolog from open
source. Both Computer Associates and Oracle have educational pricing for their software and we
expect the individual universities and colleges that use this laboratory manual to provide the
software for use by their students.

Rajshekhar Sunderraman
Atlanta, Georgia

August 2010

 4

Contents 
ER MODELING TOOLS .. 6 

1.1 STARTING WITH ERWIN ...6 
1.2 ADDING ENTITY TYPES ...7 
1.3 ADDING RELATIONSHIPS ...10 
1.4 FORWARD ENGINEERING ..12 
1.5 SUPERTYPE/SUBTYPE EXAMPLE..15 
EXERCISES ...17 

ABSTRACT QUERY LANGUAGES ... 21 
2.1 CREATING THE DATABASE ...21 
2.2 RELATIONAL ALGEBRA INTERPRETER..23 

2.2.1 Relational Algebra Syntax ..23 
2.2.2 Naming of Intermediate Relations and Attributes ...25 
2.2.3 Relational Algebraic Operators Supported by the RA Interpreter ..26 
2.2.4 Examples ..27 

2.3 DOMAIN RELATIONAL CALCULUS INTERPRETER..30 
2.3.1 Domain Relational Calculus Syntax ..30 
2.3.2 Safe DRC Queries ..32 
2.3.3 DRC Query Examples ..34 

2.4 DATALOG INTERPRETER ..35 
2.4.1 Datalog Syntax ...35 
2.4.2 Datalog Query Examples ..36 

EXERCISES ...42 
RELATIONAL DATABASE MANAGEMENT SYSTEM: ORACLE™.. 45 

3.1 COMPANY DATABASE..45 
3.2 SQL*PLUS UTILITY..49 
3.3 SQL*LOADER UTILITY..50 
3.4 PROGRAMMING WITH ORACLE USING THE JDBC API ...53 
EXERCISES ...63 

RELATIONAL DATABASE MANAGEMENT SYSTEM: MYSQL ... 69 
4.1 COMPANY DATABASE..69 
4.2 MYSQL UTILITY ...73 
4.3 MYSQL AND PHP PROGRAMMING ..75 
4.4 ONLINE ADDRESS BOOK ...87 
EXERCISES ...100 

DATABASE DESIGN (DBD) TOOLKIT .. 103 
5.1 CODING RELATIONAL SCHEMAS AND FUNCTIONAL DEPENDENCIES ..103 
5.2 INVOKING THE SWI‐PROLOG INTERPRETER ..103 
5.3 DBD SYSTEM PREDICATES ..105 

5.3.1 xplus(R,F,X,Xplus) ...105 
5.3.2 finfplus(R,F,[X,Y]) ..106 
5.3.3 fplus(R,F,Fplus) ...106 
5.3.4 implies(R,F1,F2) and equiv(R,F1,F2) ...107 
5.3.5 superkey(R,F,K) and candkey(R,F,K) ...108 
5.3.6 mincover(R,F,FC)...109 
5.3.7 ljd(R,F,R1,R2), ljd(R,F,D), and fpd(R,F,D) ..110 
5.3.8 is3NF(R,F) and threenf(R,F,D) ...113 

 5

5.3.9 isBCNF(R,F) and bcnf(R,F,D)..113 
EXERCISES ...114 

OBJECT‐ORIENTED DATABASE MANAGEMENT SYSTEMS: DB4O... 119 
6.1 DB4O INSTALLATION AND GETTING STARTED ..119 
6.2 A SIMPLE EXAMPLE ...120 
6.3 DATABASE UPDATES AND DELETES ...123 
6.4 COMPANY DATABASE...123 
6.5 DATABASE QUERYING ..125 

6.5.1 Query by Example...125 
6.5.2 Native Queries ..125 
6.5.3 SODA (Simple Object Database Access) Queries ..126 

6.6 COMPANY DATABASE APPLICATION ..129 
6.6.1 CreateDatabase.java..129 
6.6.2 createEmployees ..130 
6.6.3 createDependents ..131 
6.6.4 createDepartment ..132 
6.6.5 createProjects...133 
6.6.6 createWorksOn...134 
6.6.7 setManagers ..135 
6.6.8 setControls ...136 
6.6.9 setWorksFor ...137 
6.6.10 setSupervisors...138 
6.6.11 Complex Retrieval Example ..139 

6.7 WEB APPLICATION ..140 
6.7.1 Client‐Server Configuration ..140 

EXERCISES ...146 
XML... 153 

7.1 XML BASICS ..153 
7.2 COMPANY DATABASE IN XML ...155 
7.3 XML EDITOR EDITIX..157 
7.4 XPATH ..159 
7.5 XQUERY ..163 
7.6 XML SCHEMA ..173 
EXERCISES ...178 

PROJECTS .. 180 
8.1 STUDENT REGISTRATION SYSTEM (GOLUNAR) ...180 
8.2 ONLINE BOOK STORE DATABASE SYSTEM...189 
8.3 ONLINE SHOPPING SYSTEM ...198 
8.4 ONLINE BULLETIN BOARD SYSTEM..204 
8.5 ONLINE EXAM MANAGEMENT SYSTEM..207 
8.6 ONLINE AUCTIONS ..211 

BIBLIOGRAPHY .. 215 

 6

CHAPTER 1 
 

ER Modeling Tools 

This chapter introduces ERWin, a popular data-modeling tool used in the industry. ERWin is a
powerful tool that allows database designers to enter their Entity Relationship (ER) diagrams in a
graphical form and produce physical database designs for popular relational database management
systems such as Oracle and Microsoft SQLServer.

The use of ERWin is illustrated in this chapter using the ER schema diagram for the COMPANY
database shown in Figure 7.2 of the Elmasri/Navathe text.

1.1 Starting with ERWin 

The ERWin Data Modeler workspace is shown in Figure 1.1.

Figure 1.1: ERWin Data Modeler Workspace

The top part of the workspace consists of Menu and Toolbars. The middle part of the workspace
consists of two panes: the model explorer panel on the left providing a text based view of the data
model and the diagram window panel on the right providing a graphical view of the data model.
The lower part of the workspace consists of two panes: the action log panel on the left that
displays a log of all changes made to the data model under design and the advisories panel that
displays messages associated with the actions performed on the data model under design.

ERWin supports three model types for use by the database designer:

1. Logical: A conceptual model that includes entities, relationships, and attributes. This model
type is essentially at the ER modeling level.

 7

2. Physical: A database specific model that contains relational tables, columns and associated
data types.

3. Logical/Physical: A single model that includes both the conceptual level objects as well as
physical level tables. In this chapter we will use this model type.

To create a model in ERWin, one should launch the program and then choose the “New” option
from the File menu. The Create Model dialog appears as shown in Figure 1.2.

Figure 1.2: Create Model dialog window

In this dialog window, the user should choose the type of model. Typically the Logical/Physical
model type should be chosen if the final goal is to produce a relational design for the database. The
target database may also be chosen. In this case, Oracle 10.x version is chosen as the target
database. In a future step, we will illustrate how ERWin can be used to generate SQL code to
create the database objects in Oracle 10.x database.

The workspace for the new model will be populated by the system with a default name of
Model_n. This name may be changed in the model explorer pane by right clicking the model name
and choosing the Properties option. This brings up a new window in which the name and other
properties of the model may be changed. Besides changing the model name, the “Transform”
options should be checked. This would allow for many-to-many relationships to be transformed
correctly into separate relational tables in the physical model. In addition any sub-type/super-type
relationships will also be transformed correctly in the physical model.

1.2 Adding Entity Types 

To add an entity type to the database design, the user may either right click the “Entities” entry in
the model explorer pane and choose “New” or choose the “Entity” icon in the Menus and Toolbars
section of the workspace and click in the diagram window panel. An entity box shows up in the
diagram window panel with a default entity name (E/n) that can be changed either in the diagram
window panel or in the model explorer pane. Figure 1.3 shows the addition of the EMPLOYEE
entity type in the COMPANY database.

 8

Figure 1.3: Add EMPLOYEE entity to the COMPANY database

To add attributes to the EMPLOYEE entity type, the user may right click within the EMPLOYEE
entity box in the diagram window panel and choose “Attributes”. This brings up a separate
window using which new attributes may be added. The attribute window is shown in Figure 1.4.

Figure 1.4: Attribute Window

The user may now add attributes one at a time by clicking the “New” button. A separate window
pops up as shown in Figure 1.5.

 9

Figure 1.5: New Attribute Window

The user may choose an appropriate Domain (data type) and enter the Attribute Name and click
OK. The data type may be further refined in the Attribute Window by choosing the Datatype tab
and entering a precise data type. The user may also choose to designate this attribute as a primary
key by selecting this option in the Attribute window.

After adding a few attributes to the EMPLOYEE entity type the Attributes window is shown in
Figure 1.6.

Figure 1.6: Attribute Window with four attributes

In this way, we can create each of entity types: EMPLOYEE, DEPARTMENT, PROJECT, and
DEPENDENT for the COMPANY database.

 10

Weak Entity Sets

By default any entity type created as discussed so far is classified as an independent entity type.
ERWin will classify an entity type as “weak” as soon as it participates in an identifying
relationship. For example, the entity type DEPENDENT will be classified as “weak” in a
subsequent step when we add the identifying relationship from EMPLOYEE to DEPENDENT in
the next section. Weak entity types are denoted by rounded rectangles in the diagram window
panel.

Multi-Valued Attributes

Multi-valued attributes such as the locations attribute for the DEPARTMENT entity type cannot be
modeled easily with ERWin. To handle such attributes, a separate entity type LOCATIONS is
created and a many-to-many relationship between DEPARTMENT and LOCATIONS will be
established in the next section.

1.3 Adding Relationships 

Three types of relationships are supported in ERWin: identifying, non-identifying, and many-to-
many. ERWin classifies the child entity type in an identifying relationship as “weak”. To add a
relationship, the user may simply right click the Relationships entry in the model explorer pane
and choose “New”. This pops up a new relationship window as shown in Figure 1.7.

Figure 1.7: New Relationship Window

After choosing the parent and child entity types and the type of relationship and clicking OK, the
new relationship is added and is reflected by a line connecting the two entity types in the diagram
window panel. The many-to-many relationships are denoted by solid connecting lines, with two
black dots at the two ends. Non-identifying relationships are denoted by a dashed connecting line
with a black dot at many-end and a square-shaped symbol at the one-end. Identifying relationships
are denoted by a solid connecting line with a black dot at the many-end and nothing special at the
one-end.

After creating a new relationship, the user may add verb phrases and other properties of the
relationship by right clicking the connecting line in the diagram and choosing properties.

 11

In the case of the COMPANY database, we create the following relationships:

• One identifying relationship from EMPLOYEE to DEPENDENT.
• Two many-to-many relationships, one from EMPLOYEE to PROJECT and the other from

DEPARTMENTS to LOCATIONS, and
• Four non-identifying relationships: from EMPLOYEE to DEPARTMENT (one-to-one for

manages), from DEPARTMENT to EMPLOYEE (one-to-many for works for relationship),
from EMPLOYEE to EMPLOYEE (one-to-many for supervisor/supervisee relationship),
and from DEPARTMENT to PROJECT (one-to-many for the controls relationship).

The final logical ER diagram from the diagram window panel is shown in Figure 1.8.

Figure 1.8: Final Logical ER Diagram

Notice that the two many-to-many relationships do not have the transforms applied yet. The
transforms are shown in the physical ER diagram (obtained by switching from Logical to Physical
in the Menu and Toolbar section) in Figure 1.9. Notice the introduction of the two new “entity
types” for the two many-to-many relationships. These entity types are introduced because the
transforms are defined at the model level.

 12

Figure 1.9: Final Physical ER Diagram

1.4 Forward Engineering 

ERWin provides a powerful feature called forward engineering that allows the database designer to
convert the ER design into a schema generation SQL script for one or more target relational
databases. The following SQL script is obtained for the COMPANY database by choosing
ToolsForward EngineeringSchema-Generation option in the Menus and Toolbars section and
clicking the “Preview” button.

CREATE TABLE DEPARTMENT
(
 dname VARCHAR2(20) NOT NULL ,
 dnumber INTEGER NOT NULL ,
 mgrssn NUMBER(9) NULL
);

ALTER TABLE DEPARTMENT
 ADD PRIMARY KEY (dnumber);

CREATE TABLE DEPARTMENT_LOCATIONS
(
 dnumber INTEGER NOT NULL ,
 dlocation VARCHAR2(20) NOT NULL
);

ALTER TABLE DEPARTMENT_LOCATIONS
 ADD PRIMARY KEY (dnumber,dlocation);

 13

CREATE TABLE DEPENDENT
(
 dependentname VARCHAR2(20) NOT NULL ,
 sex CHAR NULL ,
 bdate DATE NULL ,
 relationship VARCHAR2(20) NULL ,
 essn NUMBER(9) NOT NULL
);

ALTER TABLE DEPENDENT
 ADD PRIMARY KEY (dependentname,essn);

CREATE TABLE EMPLOYEE
(
 ssn NUMBER(9) NOT NULL ,
 superssn NUMBER(9) NULL ,
 fname VARCHAR2(20) NULL ,
 minit CHAR NULL ,
 lname VARCHAR2(20) NOT NULL ,
 address VARCHAR2(50) NULL ,
 bdate DATE NULL ,
 salary NUMBER(8) NULL ,
 sex CHAR NULL ,
 dno INTEGER NULL
);

ALTER TABLE EMPLOYEE
 ADD PRIMARY KEY (ssn);

CREATE TABLE EMPLOYEE_PROJECT
(
 ssn NUMBER(9) NOT NULL ,
 pnumber INTEGER NOT NULL ,
 hours NUMBER(3) NULL
);

ALTER TABLE EMPLOYEE_PROJECT
 ADD PRIMARY KEY (ssn,pnumber);

CREATE TABLE LOCATIONS
(
 dlocation VARCHAR2(20) NOT NULL
);

ALTER TABLE LOCATIONS
 ADD PRIMARY KEY (dlocation);

 14

CREATE TABLE PROJECT
(
 pnumber INTEGER NOT NULL ,
 pname VARCHAR2(20) NULL ,
 plocation VARCHAR2(20) NULL ,
 dnum INTEGER NULL
);

ALTER TABLE PROJECT
 ADD PRIMARY KEY (pnumber);

ALTER TABLE DEPARTMENT
 ADD (FOREIGN KEY (mgrssn) REFERENCES EMPLOYEE(ssn) ON DELETE SET NULL);

ALTER TABLE DEPARTMENT_LOCATIONS
 ADD (FOREIGN KEY (dnumber) REFERENCES DEPARTMENT(dnumber));

ALTER TABLE DEPARTMENT_LOCATIONS
 ADD (FOREIGN KEY (dlocation) REFERENCES LOCATIONS(dlocation));

ALTER TABLE DEPENDENT
 ADD (FOREIGN KEY (essn) REFERENCES EMPLOYEE(ssn));

ALTER TABLE EMPLOYEE
 ADD (FOREIGN KEY (superssn) REFERENCES EMPLOYEE(ssn) ON DELETE SET
NULL);

ALTER TABLE EMPLOYEE
 ADD (FOREIGN KEY (dno) REFERENCES DEPARTMENT(dnumber) ON DELETE SET
NULL);

ALTER TABLE EMPLOYEE_PROJECT
 ADD (FOREIGN KEY (ssn) REFERENCES EMPLOYEE(ssn));

ALTER TABLE EMPLOYEE_PROJECT
 ADD (FOREIGN KEY (pnumber) REFERENCES PROJECT(pnumber));

ALTER TABLE PROJECT
 ADD (FOREIGN KEY (dnum) REFERENCES DEPARTMENT(dnumber) ON DELETE SET
NULL);

The above SQL script contains table definitions and basic primary and foreign key constraints
definitions. ERWin does provide a number of options to generate views, triggers, indices etc. and
these can be set in the forward engineering schema generation window.

 15

1.5 Supertype/Subtype Example 

ERWin supports the creation of sub-type/super-type relationships between entity types. Consider
the example in Figure 8.3 of the Elmasri/Navathe text in which a super-type entity VEHICLE
consists of two sub-types CAR and TRUCK. To create this design in ERWin, the three entity types
are created first. Then, the user may click the sub-type button (a circle with two parallel lines
below the circle) in the Menus and Toolbars section, followed by clicking the super-type entity
(VEHICLES) in the diagram window pane, followed by clicking the sub-type entity (CAR) in the
diagram window pane. This process may be repeated for adding other sub-types (TRUCK in this
example). The logical model for this example is shown in Figure 1.10.

Figure 1.10: Sub-type/Super-type Logical ER Diagram

To customize the properties of the sub-type/super-type relationship, the user may right click the
relationship symbol (circle with two parallel lines) and choose Subtype Relationship. This brings
up a window shown in Figure 1.11. The user may choose “Complete” subtype (when all categories
are known) or “Incomplete” subtype (when all categories may not be known). The user may also
add verb phrases etc by right-clicking the relationship line and choosing properties as was done for
ordinary relationships. ERWin also allows the user to choose a “discriminator” attribute for the
sub-types (an attribute in the super-type whose values determine the sub-type object). If no
discriminator attribute is defined, the user may choose “-- -- --”.

 16

Figure 1.11: Subtype Relationship Properties

The following SQL script is produced using the forward engineering feature of ERWin for the
Vehicles example:

CREATE TABLE CAR
(
 MaxSpeed INTEGER NULL ,
 NumOfPassengers INTEGER NULL ,
 VehicleID INTEGER NOT NULL
);

ALTER TABLE CAR
 ADD PRIMARY KEY (VehicleID);

CREATE TABLE TRUCK
(
 NumOfAxles INTEGER NULL ,
 Tonnage INTEGER NULL ,
 VehicleID INTEGER NOT NULL
);

ALTER TABLE TRUCK
 ADD PRIMARY KEY (VehicleID);

CREATE TABLE VEHICLE
(
 VehicleID INTEGER NOT NULL ,
 Price NUMBER(8,2) NULL ,
 LicensePlateNo VARCHAR2(20) NULL
);

ALTER TABLE VEHICLE
 ADD PRIMARY KEY (VehicleID);

 17

ALTER TABLE CAR
 ADD (FOREIGN KEY (VehicleID) REFERENCES VEHICLE(VehicleID));

ALTER TABLE TRUCK
 ADD (FOREIGN KEY (VehicleID) REFERENCES VEHICLE(VehicleID));

Exercises 

ER Modeling Problems

1. Consider the university database described in Exercise 7.16 of the Elmasri/Navathe text.

Enter the ER schema for this database using a data-modeling tool such as ERWin.

2. Consider a mail order database in which employees take orders for parts from customers.

The data requirements are summarized as follows:

• The mail order company has employees identified by a unique employee number,
their first and last names, and a zip code where they are located.

• Customers of the company are uniquely identified by a customer number. In
addition, their first and last names and a zip code where they are located are
recorded.

• The parts being sold by the company are identified by a unique part number. In
addirion, a part name, their price, and quantity in stock are recorded.

• Orders placed by customers are taken by employees and are given a unique order
number. Each order may contain certain quantities of one or more parts and their
received date as well as a shipped date is recorded.

Design an Entity-Relationship diagram for the mail order database and enter the design
using a data-modeling tool such as ERWin.

3. Consider a movie database in which data is recorded about the movie industry. The data

requirements are summarized as follows:
• Movies are identified by their title and year of release. They have a length in

minutes. They also have a studio that produces the movie and are classified under
one or more genres (such as horror, action, drama etc). Movies are directed by one
or more directors and have one or more actors acting in them. The movie also has a
plot outline. Each movie also has zero or more quotable quotes that are spoken by a
particular actor acting in the movie.

• Actors are identified by their names and date of birth and act in one or more
movies. Each actor has a role in the movie.

• Directors are also identified by their names and date of birth and direct one or more
movies. It is possible for a director to act in a movie (not necessarily in a movie
they direct).

 18

• Studios are identified by their names and have an address. They produce one or
more movies.

Design an Entity-Relationship diagram for the movie order database and enter the
design using a data-modeling tool such as ERWin.

4. Consider a conference review system database in which researchers submit their research
papers for consideration. The database system also caters to reviewers of papers who make
recommendations on whether to accept or reject the paper. The data requirements are
summarized as follows:
Authors of papers are uniquely identified by their email id. Their first and last names are
also recorded.

• Papers are assigned unique identifiers by the system and are described by a title, an
abstract, and a file name containing the actual paper.

• Papers may have multiple authors, but one of the authors is designated as the
contact author.

• Reviewers of papers are uniquely identified by their email id. Their first and last
names are also recorded.

• Each paper is assigned between two and four reviewers. The reviewer rates the
paper assigned to him on a scale of 1 to 10.

• Each review contains two types of written comments: one to be seen by the review
committee only and the other by the author(s) as well.

Design an Entity-Relationship diagram for the conference review database and enter the
design using a data-modeling tool such as ERWin.

5. Consider the ER diagram for the AIRLINE database shown in Figure 7.20 of the

Elmasri/Navathe text. Enter this design using a data-modeling tool such as ERWin.

Enhanced ER Modeling Problems

6. Consider a grade book database in which instructors within an academic department
maintain scores/points obtained by individual students in their classes. The data
requirements are summarized as follows:

• Students are identified by a unique student id, their first and last names, and an

email address.
• The instructor teaches certain courses each term. The courses are uniquely

identified by a course number, a section number, and the term in which they are
taught. The instructor also assigns grade cutoffs (example 90, 80, 70, and 60) for
letter grades A, B, C, D, and F for each course he or she teaches.

• Students are enrolled in courses taught by the instructor.
• Each course being taught by the instructor has a number of grading components

(such as mid-term, final exam, project, etc.). Each grading component has a
maximum number of points (such as 100 or 50) and a weight (such as 20% or 10%).
The weights of all the grading components of a course usually add up to 100.

 19

• Finally, the instructor records the points earned by each student in each of the
grading components in each of the courses. For example, student with id=1234
earns 84 points for the grading component mid-term for the course CSc 2310
section 2 in the fall 2005 term. The mid-term grading component may have been
defined to have a maximum of 100 points and a weight of 20% of the course grade.

Design an enhanced Entity-Relationship diagram for the grade book database and enter
the design using a data-modeling tool such as ERWin.

7. Consider an online auction database system in which members (buyers and sellers)

participate in the sale of items. The data requirements for this system are summarized as
follows:

• The online site has members who are identified by a unique member id and are

described by an email address, their name, a password, their home address, and a
phone number.

• A member may be a buyer or a seller. A buyer has a shipping address recorded in
the database. A seller has a bank account number and routing number recorded in
the database.

• Items are placed by a seller for sale and are identified by a unique item number
assigned by the system. Items are also described by an item title, an item
description, a starting bid price, bidding increment, the start date of the auction, and
the end date of the auction.

• Items are also categorized based on a fixed classification hierarchy (for example a
modem may be classified as /COMPUTER/HARDWARE/MODEM).

• Buyers make bids for items they are interested in. A bidding price and time of bid
placement is recorded. The person at the end of the auction with the highest bid
price is declared the winner and a transaction between the buyer and the seller may
proceed soon after.

• Buyers and sellers may place feedback ratings on the purchase or sale of an item.
The feedback contains a rating between 1 and 10 and a comment. Note that the
rating is placed by the buyer or seller involved in the completed transaction.

Design an Entity-Relationship diagram for the auction database and enter the design
using a data-modeling tool such as ERWin.

8. Consider a database system for a baseball organization such as the major leagues. The data

requirements are summarized as follows:

• The personnel involved in the league include players, coaches, managers, and

umpires. Each is identified by a unique personnel id. They are also described by
their first and last names along with the date and place of birth.

• Players are further described by other attributes such as their batting orientation
(left, right, or switch) and have a lifetime batting average (BA).

• Within the players group is a subset of players called pitchers. Pitchers have a life-
time ERA (earned run average) associated with them.

 20

• Teams are uniquely identified by their names. Teams are also described by the city
in which they are located and the division and league in which they play (such as
Central division of the American league).

• Teams have one manager, a number of coaches, and a number of players.
• Games are played between two teams with one designated as the home team and the

other the visiting team on a particular date. The score (runs, hits, and errors) are
recorded for each team. The team with more number of runs is declared the winner
of the game.

• With each finished game, a winning pitcher and a losing pitcher are recorded. In
case there is a save awarded, the save pitcher is also recorded.

• With each finished game, the number of hits (singles, doubles, triples, and home
runs) obtained by each player is also recorded.

Design an Entity-Relationship diagram for the baseball database and enter the design
using a data-modeling tool such as ERWin.

9. Consider the ER diagram for the university database shown in Figure 8.9 of the

Elmasri/Navathe text. Enter this design using a data-modeling tool such as ERWin.

10. Consider the ER diagram for the small airport database shown in Figure 8.12 of the

Elmasri/Navathe text. Enter this design using a data-modeling tool such as ERWin.

 21

CHAPTER 2

Abstract Query Languages 

This chapter introduces Java-based interpreters for three abstract query languages: Relational
Algebra (RA), Domain Relational Calculus (DRC), and Datalog. The interpreters have been
implemented using the parser generator tools JCup and JFlex. In order to use these interpreters,
one needs to only download two jar files: dbengine.jar and aql.jar and include them in
the Java CLASSPATH. The JCup libraries are included as part of the jar files and hence the only
other software that is required to use the interpreters is a standard Java environment.

The system is simple to use and comes with a database engine that implements a set of basic
relational algebraic operators. The interpreter reads a query from the terminal and performs the
following three steps:

(1) Syntax Check: The query is checked for any syntax errors. If there are any syntactic errors,
the interpreter reports these to the terminal and waits to read another query; otherwise the
interpreter proceeds to the second step.

(2) Semantics Check: The syntactically correct query is checked for semantic errors including

type mismatches, invalid column references, and invalid relation names. In addition, the
DRC and Datalog interpreters check the queries for safety. If there are any semantic errors
or if the DRC/Datalog query is unsafe, the interpreter reports these to the terminal and
waits to read another query; otherwise the interpreter proceeds to the third step.

(3) Query Evaluation: The query is evaluated using the primitives provided by the database

engine and the results are displayed.

2.1 Creating the Database 

Before the user can start using the interpreters, they must create a database against which they will
submit queries. The database consists of several text files all stored within a directory. The
directory is named after the database name. For example, to create a database identified with the
name db1 and containing two tables:

 student(sid:integer,sname:varchar,phone:varchar,gpa:decimal)
 skills(sid:integer,language:varchar)

a directory called db1 should be created along with the following three files (one for the catalog
description and the remaining two for the data for the two tables):

catalog.dat
STUDENT.dat
SKILLS.dat

 22

The file names are case sensitive and should strictly follow the convention used, i.e.
catalog.dat should be all lower case and the data files should be named after their relation
name in upper case followed by the file suffix, .dat, in lower case.

The catalog.dat file contains the number of relations in the first line followed by the
descriptions of each relation. The description of each relation begins with the name of the relation
in a separate line followed by the number of attributes in a separate line followed by attribute
descriptions. Each attribute description includes the name of the attribute in a separate line
followed by the data type (VARCHAR, INTEGER, or DECIMAL) in a separate line. All names and
data types are in upper case. There should be no leading or trailing white space in any of the lines.
The catalog.dat file for database db1 is shown below:

2
STUDENT
4
SID
INTEGER
SNAME
VARCHAR
PHONE
VARCHAR
GPA
DECIMAL
SKILLS
2
SID
INTEGER
LANGUAGE
VARCHAR

The db1 directory must include one data file for each relation. In the case of db1, they should be
named STUDENT.dat and SKILLS.dat. The data file for relations contains the number of
tuples in the first line followed by the description of each tuple. Tuples are described by the values
under each column with each vale in a separate line. For example, let the SKILLS relation have
three tuples:

 (111,Java)
 (111,C++)
 (222,Java)

These tuples will be represented in the SKILLS.dat data file as follows:

3
111
Java

 23

111
C++
222
Java

Again, there should be no leading or trailing white spaces in any of the lines. Some pre-defined
databases are available along with this laboratory manual. New data may be added to existing
databases as well as new databases may be created when needed.

2.2 Relational Algebra Interpreter 

The RA interpreter is invoked using the following terminal command:

$ java edu.gsu.cs.ra.RA company

Here $ is the command prompt and company is the name of the database (as well as the name of
the directory where the database files are stored). This command assumes that the company
directory is present in the same directory where this command is issued. Of course, one can issue
this command in a different directory by providing the full path to the database directory.

The interpreter responds with the following prompt:

RA>

At this prompt the user may enter a Relational Algebra query or type the exit command. Every
query is terminated by a “;”. Even the exit command must end with a semi-colon. Queries may
span more than one line; upon typing the ENTER key the interpreter prints the RA> prompt and
waits for further input unless the ENTER key is typed after a semi-colon, in which case the query
is processed by the interpreter.

2.2.1 Relational Algebra Syntax 

A subset of Relational Algebra that includes the union, minus, intersect, Cartesian product, natural
join, select, project, and rename operators is implemented in the interpreter. The context-free
grammar for this subset is shown below:

<Query> ::= <Expr> SEMI;
<Expr> ::= <ProjExpr> | <RenameExpr> | <UnionExpr> |
 <MinusExpr> | <IntersectExpr> | <JoinExpr> |
 <TimesExpr> | <SelectExpr> | RELATION
<ProjExpr> ::= PROJECT [<AttrList>] (<Expr>)
<RenameExpr> ::= RENAME [<AttrList>] (<Expr>)
<AttrList> ::= ATTRIBUTE | <AttrList> , ATTRIBUTE
<UnionExpr> ::= (<Expr> UNION <Expr>)
<MinusExpr> ::= (<Expr> MINUS <Expr>)
<IntersectExpr> ::= (<Expr> INTERSECT <Expr>)

 24

<JoinExpr> ::= (<Expr> JOIN <Expr>)
<TimesExpr> ::= (<Expr> TIMES <Expr>)
<SelectExpr> ::= SELECT [<Condition>](<Expr>)
<Condition> ::= <SimpleCondition> |
 <SimpleCondition> AND <Condition>
<SimpleCondition> ::= <Operand> <Comparison> <Operand>
<Operand> ::= ATTRIBUTE | STRING-CONST | NUMBER-CONST
<Comparison> ::= < | <= | = | <> | > | >=

The terminal strings in the grammar include

• Keywords for the relational algebraic operators: PROJECT, RENAME, UNION, MINUS,
INTERSECT, JOIN, TIMES, and SELECT. These keywords are case-insensitive.

• Logical keyword AND (case-insensitive).
• Miscellaneous syntactic character strings such as (,), <, <=, =, <>, >, >=, ;, and comma (,).
• Name strings: RELATION and ATTRIBUTE (case-insensitive names of relations and their

attributes).
• Constant strings: STRING-CONST (a string enclosed within single quotes; e.g. ‘Thomas’)

and NUMBER-CONST (integer as well as decimal numbers; e.g. 232 and -36.1).

An example of a well-formed syntactically correct query for the company database of the
Elmasri/Navathe text is:

(project[ssn](select[lname=’Jones’](employee))
 union
 project[superssn](select[dno=5](employee))
);

All relational algebra queries must be terminated by a “;”.

A relational algebra query in the simplest form is a “relation name”. For example the following
terminal session with the interpreter illustrates the execution of this simple query form:

$ java edu.gsu.cs.ra.RA company
RA> departments;
SEMANTIC ERROR in RA Query: Relation DEPARTMENTS does not exist
RA> department;
DEPARTMENT(DNAME:VARCHAR,DNUMBER:INTEGER,MGRSSN:VARCHAR,MGRSTARTDA
TE:VARCHAR)

Number of tuples = 6
Research:5:333445555:22-MAY-1978:
Administration:4:987654321:01-JAN-1985:
Headquarters:1:888665555:19-JUN-1971:
Software:6:111111100:15-MAY-1999:
Hardware:7:444444400:15-MAY-1998:

 25

Sales:8:555555500:01-JAN-1997:

RA> exit;
$

In response to a query, the interpreter displays the schema of the result followed by the answer to
the query. Individual values within a tuple are terminated by a “:”. The simplest query form is
useful to display the database contents.

More complicated relational algebra queries involve one or more applications of one or more of
the several operators such as select, project, times, join, union, etc. For example, consider the
query “Retrieve the names of all employees working for Dept. No. 5”. This would be expressed by
the query execution in the following RA session:

RA> project[fname,lname](select[dno=5](employee));
temp1(FNAME:VARCHAR,LNAME:VARCHAR)

Number of tuples = 4
Franklin:Wong:
John:Smith:
Ramesh:Narayan:
Joyce:English:

RA>

2.2.2 Naming of Intermediate Relations and Attributes 

The RA interpreter assigns temporary relation names such as temp0, temp1, etc. to each
intermediate relation encountered in the execution of the entire query. The RA interpreter also
employs the following rules as far as naming of attributes/columns of intermediate relations:

1. Union, Minus, and Intersect: The attribute/column names from the left operand are used to

name the attributes of the output relation.
2. Times (Cartesian Product): Attribute/Column names from both operands are used to name

the attributes of the output relation. Attribute/Column names that are common to both
operands are prefixed by relation name (tempN).

3. Select: The attribute names of the output relation are the same as the attribute/column
names of the operand.

4. Project, Rename: Attribute/Column names present in the attribute list parameter of the
operator are used to name the attributes of the output relation. Duplicate attribute/column
names are not allowed in the attribute list.

5. Join (Natural Join): Attribute/Column names from both operands are used to name the
attributes of the output relation. Common attribute/column names appear only once.

 26

As another example, consider the query “Retrieve the social security numbers of employees who
either work in department 5 or directly supervise an employee who works in department 5”. The
query is illustrated in the following RA session:

RA> (project[ssn](select[dno=5](employee))
RA> union project[superssn](select[dno=5](employee)));
temp4(SSN:VARCHAR)

Number of tuples = 5
333445555:
123456789:
666884444:
453453453:
888665555:

RA>

2.2.3 Relational Algebraic Operators Supported by the RA Interpreter 

Select: As can be noted from the grammar, the select operator supported by the interpreter has the
following syntax:

 select[condition](expression)

where condition is a conjunction of one or more simple conditions involving comparisons of
attributes or constants with other attributes or constants. The attributes used in the condition must
be present in the attributes of the relation corresponding to expression.

Project: The project operator supported by the interpreter has the following syntax:

 project[attribute-list](expression)

where attribute-list is a comma separated list of attributes, each of which is present in the
attributes of the relation corresponding to expression.

Rename: The syntax for the rename operator is

 rename[attribute-list](expression)

where attribute-list is a comma separated list of attribute names. The number of attributes
mentioned in the list must be equal to the number of attributes of the relation corresponding to
expression.

Join: The syntax for the join operator is

 (expression1 join expression2)

 27

There is no restriction on the schemas of the two expressions.

Times: The syntax for the times operator is

 (expression1 times expression2)

There is no restriction on the schemas of the two expressions.

Union: The syntax for the union operator is

 (expression1 union expression2)

The schemas of the two expressions must be compatible (same number of attributes and same data
types; the names of the attributes may be different).

Minus: The syntax for the minus operator is

 (expression1 minus expression2)

The schemas of the two expressions must be compatible (same number of attributes and same data
types; the names of the attributes may be different).

Intersect: The syntax for the intersect operator is

 (expression1 intersect expression2)

The schemas of the two expressions must be compatible (same number of attributes and same data
types; the names of the attributes may be different).

2.2.4 Examples 

The queries from Section 6.5 of the Elmasri/Navathe text modified to work with the RA interpreter
are shown below:

Query 1: Retrieve the name and address of employees who work for the "Research"
department.

project[fname,lname,address](
 (rename[dname,dno,mgrssn,mgrstartdate](
 select[dname='Research'](department))
 join
 employee
)
);

 28

Query 2: For every project located in "Stafford", list the project number, the controlling
department number, and the department manager's last name, address, and birth date.

project[pnumber,dnum,lname,address,bdate](
 (
 (select[plocation='Stafford'](projects)
 join
 rename[dname,dnum,ssn,mgrstartdate](department)
)
 join employee
)
);

Query 3: Find the names of employees who work on all the projects controlled by department
number 5.

project[lname,fname](
 (employee
 join
 (project[ssn](employee)
 minus
 project[ssn](
 (
 (project[ssn](employee)
 times
 project[pnumber](select[dnum=5](projects))
)
 minus
 rename[ssn,pnumber](project[essn,pno](works_on))
)
)
)
)
);

Query 4: Make a list of project numbers for projects that involve an employee whose last name is
"Smith", either as a worker or as a manager of the department that controls the project.

(project[pno](
 (rename[essn](project[ssn](select[lname='Smith'](employee)))
 join
 works_on
)
)
 union
 project[pnumber](
 (rename[dnum](project[dnumber](select[lname='Smith'](

 29

 (employee
 join
 rename[dname,dnumber,ssn,mgrstartdate](department)
)
)
)
)
 join
 projects
)
)
);

Query 5: List the names of all employees with two or more dependents.

project[lname,fname](
(rename[ssn](
 project[essn1](
 select[essn1=essn2 and dname1<>dname2](
 (rename[essn1,dname1](project[essn,dependent_name](dependent))
 times
 rename[essn2,dname2](project[essn,dependent_name](dependent)))
)
)
)
join
employee)
);

Query 6: Retrieve the names of employees who have no dependents.

project[lname,fname](
 ((project[ssn](employee)
 minus project[essn](dependent)
)
 join
 employee
)
);

Query 7: List the names of managers who have at least one dependent.

project[lname,fname](
 ((rename[ssn](project[mgrssn](department))
 join
 rename[ssn](project[essn](dependent))
)

 30

 join
 employee
)
);

Important Tip: Since many of the queries shown above are long and span multiple lines, the best
way to use the interpreter is to create a text file in which the queries are typed. These queries are
then cut and pasted into the interpreter prompt. Any errors in syntax or semantics should be
corrected in the text file and then the process of cut and paste should be repeated until a correct
solution is reached.

2.3 Domain Relational Calculus Interpreter 

The DRC interpreter is invoked using the following terminal command:

$ java edu.gsu.cs.drc.DRC company

Here $ is the command prompt and company is the name of the database (as well as the name of
the directory where the database files are stored). This command assumes that the company
directory is present in the same directory where this command is issued. Of course, one can issue
this command in a different directory by providing the full path to the database directory.

The interpreter responds with the following prompt:

DRC>

At this prompt the user may enter a Domain Relational Calculus query or type the exit
command. Each DRC query is expressed in a set-notation using a pair of curly brackets as follows:

 { variable-list | P(variable-list) }

where variable-list is a comma-separated list of variables which must all be present in the
body predicate of the query P(variable-list) as free-variables.

The exit command must end with a semi-colon. Queries may span more than one line; upon
typing the ENTER key the interpreter prints the DRC> prompt and waits for further input unless
the ENTER key is typed after a right curly bracket (}), in which case the query is processed by the
interpreter.

2.3.1 Domain Relational Calculus Syntax 

The context-free grammar for DRC queries implemented within the DRC interpreter is shown
below:

Query ::= LBRACE VarList BAR Formula RBRACE;

 31

VarList ::= NAME | VarList COMMA NAME;
Formula ::= AtomicFormula |

 Formula AND Formula |
 Formula OR Formula |
 NOT LPAREN Formula RPAREN |
 LPAREN EXISTS VarList RPAREN LPAREN Formula RPAREN |
 LPAREN FORALL VarList RPAREN LPAREN Formula RPAREN;

AtomicFormula ::=
NAME LPAREN ArgList RPAREN | Arg Comparison Arg;

ArgList ::= Arg | ArgList COMMA Arg;
Arg ::= NAME | STRING | NUMBER;
Comparison ::= < | <= | = | <> | > | >=

The terminal strings in the grammar include

• Keywords for the logical operators: AND, OR, and NOT. These keywords are case-
insensitive.

• Quantifier keywords EXISTS and FORALL (case-insensitive).
• Miscellaneous syntactic character strings such as (,), <, <=, =, <>, >, >=, and comma (,).
• NAME strings: used for named relations and variables (case-insensitive).
• Constant strings: STRING (a string enclosed within single quotes; e.g. ‘Thomas’) and

NUMBER (integer as well as decimal numbers; e.g. 232 and -36.1).

An example of a well-formed syntactically correct query on the company database of the
Elmasri/Navathe text is:

{ x | (exists a1,a2,a3,a4,a5,a6,a7,a8)(

employee(a1,a2,’Jones’,x,a3,a4,a5,a6,a7,a8)) or
 (exists a1,a2,a3,a4,a5,a6,a7,a8)(
 employee(a1,a2,a3,x,a4,a5,a6,a7,a8,5)) }

All DRC queries must be enclosed within a pair of matching curly brackets.

The simplest DRC query displays the contents of a relation. For example the following terminal
session with the interpreter illustrates the execution of this simple query form that displays the
contents of the DEPARTMENT relation:

$ java edu.gsu.cs.drc.DRC company
DRC> { a,b,c,d | department(a,b,c,d) }
ANSWER(A:VARCHAR,B:INTEGER,C:VARCHAR,D:VARCHAR)

Number of tuples = 6
Research:5:333445555:22-MAY-1978:
Administration:4:987654321:01-JAN-1985:
Headquarters:1:888665555:19-JUN-1971:
Software:6:111111100:15-MAY-1999:

 32

Hardware:7:444444400:15-MAY-1998:
Sales:8:555555500:01-JAN-1997:

DRC>

In response to a query, the interpreter displays the schema of the result followed by the answer to
the query.

2.3.2 Safe DRC Queries 

The DRC interpreter checks for the “safety” of queries and evaluates only those that are
determined to be safe. An error message is generated for unsafe queries.

For the discussion of safe DRC queries, we will assume that the formula defining the query does
not contain the forall quantifier. If the forall quantifier does appear in the formula, the user
can convert such a formula to an equivalent one without the forall quantifier using the logical
equivalence:

 (forall X)(F) ≡ NOT ((exists X)(NOT (F)))

It is almost always the case that the F in the forall quantified formula above is of the form

NOT (P) or Q

In case the user does not eliminate the forall quantifier, the DRC interpreter would
automatically convert all forall quantified formulas into equivalent exists quantified
formulas using the above equivalence. In addition, the interpreter would also apply the
DeMorgan’s law:

NOT (P or Q) ≡ NOT (P) and NOT (Q)

to push the NOT further inside the formula.

As an example of this automatic transformation, consider the following query provided by the
user:

{a,b |(exists c)(r(a,b,c) and
 (forall d,e)(not(s(a,d,e)) or (exists f)(t(d,f)))) }

The DRC interpreter would convert the above query to:

{a,b |(exists c)(r(a,b,c) and
 not(exists d,e)(s(a,d,e) and not(exists f)(t(d,f)))) }

 33

Definition: A DRC query (without forall quantifiers) is defined to be safe if it satisfies the
following three conditions:

(a) For every sub-formula in the query connected with an “or”, the two operand formulas
have the same set of free variables, i.e. the “or” formula is of the form:

F(X1,…,Xn) or G(X1,…,Xn)

(b) All free variables appearing in “maximal sub-conjuncts”, F1 and … and Fn, must be
“limited” in that they either appear in (i) a positive sub-formula Fi or (ii) as X in an sub-
formula of the form X=a or a=X or (iii) as X in a sub-formula of the form X=Y where Y is
determined to be “limited”.

(c) The NOT operator may be applied only to a term in a maximal sub-conjunct of type

discussed in (b), i.e. all free variables in the NOT term must be shown to be “limited” in the
positive terms of the maximal sub-conjunct.

Some examples follow. The following query would be considered safe as it satisfies condition (a).

 {a,b | (exists c)(r(a,b,c)) or s(a,b) }

But the following would not be safe:

 {a,b | (exists b,c)(r(a,b,c)) or s(a,b) }

This is because the free variables on the left operand of the “or” formula consists of only one
variable, a, and the free variables on the right operand consists of two variables, a and b.

The query formula from an earlier query:

(exists c)(r(a,b,c) and

 not(exists d,e)(s(a,d,e) and not(exists f)(t(d,f))))

is safe. The formula has the following two maximal sub-conjuncts (ignoring atomic formulas
which are maximal sub-conjuncts of size 1):

(1) s(a,d,e) and not(exists f)(t(d,f))
 all three free variables a, d, and e are limited as they appear in s(a,d,e)

(2) r(a,b,c) and
 not(exists d,e)(s(a,d,e) and not(exists f)(t(d,f)))
 all three free variables a, b, and c are limited as they appear in r(a,b,c).

The free variables in each of the maximal sub-conjuncts are shown to be “limited” and hence the
overall query is safe.

 34

The following query formula is unsafe:

 p(a,b) and not ((exists c)(q(b,c,d)))

This is because the free variable d is not “limited” as it is not grounded in a positive term in the
maximal sub-conjunct.

2.3.3 DRC Query Examples 

The queries from Section 6.7 of the Elmasri/Navathe text modified to work with DRC interpreter
are shown below:

Query 0: Retrieve the birthdate and address of the employees whose name is "John B.
Smith".

{ u,v | (exists t,w,x,y,z)(
 employee('John','B','Smith',t,u,v,w,x,y,z)) }

Query 1: Retrieve the name and address of all employees who work for the "Research"
department.

{ q,s,v | (exists r,t,u,w,x,y,z,n,o)(
 employee(q,r,s,t,u,v,w,x,y,z) and
 department('Research',z,n,o)) }

Query 2: For every project located in "Stafford", list the project number, the controlling
department number, and the department manager's last name, birth date, and address.

{ i,k,s,u,v | (exists h,q,r,t,w,x,y,z,l,o)(
 projects(h,i,'Stafford',k) and
 employee(q,r,s,t,u,v,w,x,y,z) and
 department(l,k,t,o)) }

Query 6: List the names of employees who have no dependents.

{ q,s | (exists r,t,u,v,w,x,y,z)(
 employee(q,r,s,t,u,v,w,x,y,z) and
 not ((exists m,n,o,p)(dependent(t,m,n,o,p)))) }

The following is not SAFE and would not work

{ q,s | (exists r,t,u,v,w,x,y,z)(
 employee(q,r,s,t,u,v,w,x,y,z) and
 (forall l,m,n,o,p)(not (dependent(l,m,n,o,p)) or t<>l))}

 35

Query 7: List the names of managers who have at least one dependent.

{ s,q | (exists r,t,u,v,w,x,y,z,h,i,k,m,n,o,p)(
 employee(q,r,s,t,u,v,w,x,y,z) and
 department(h,i,t,k) and
 dependent(t,m,n,o,p)) }

2.4 Datalog Interpreter 

The DLOG interpreter is invoked using the following terminal command:

$ java edu.gsu.cs.dlg.DLOG company

Here $ is the command prompt and company is the name of the database (as well as the name of
the directory where the database files are stored). This command assumes that the company
directory is present in the same directory where this command is issued. Of course, one can issue
this command in a different directory by providing the full path to the database directory.

The interpreter responds with the following prompt:

DLOG>

At this prompt the user may enter the query execution command @file-name or type the exit
command, where file-name contains the Datalog query. Each command is to be terminated by a
semi-colon. Even the exit command must end with a semi-colon.

2.4.1 Datalog Syntax 

Datalog is a rule-based logical query language for relational databases. The syntax of Datalog is
defined below:

An atomic formula is of one of the following two forms:

1. p(x1, ..., xn) where p is a relation name and x1, ..., xn are either constants or
variables, or

2. x <op> y where x and y are either constants or variables and <op> is one of the six
comparison operators: <, <=, >, >=, =, !=.

A Datalog rule is of the form:

 p :- q1, ..., qn.

Here p is an atomic formula and q1, ..., qn are either atomic formulas or negated atomic
formulas (i.e. atomic formula preceded by not). p is referred to as the head of the rule, and q1,
..., qn are referred to as sub-goals.

 36

A Datalog rule p :- q1, ..., qn. is said to be safe if
1. Every variable that occurs in a negated sub-goal also appears in a positive sub-goal, and
2. Every variable that appears in the head of the rule also appears in the body of the rule.

A Datalog query is set of safe Datalog rules with at least one rule having the answer predicate in
the head. The answer predicate collects all answers to the query.

Note: Variables that appear only once in a rule can be replaced by anonymous variables
(represented by underscores). Every anonymous variable is different from all other variables.

2.4.2 Datalog Query Examples 

The following are examples of Datalog queries against the company database:

Query 1: Get names of all employees in department 5 who work more than 10 hours/week on the
ProductX project.

 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,5),
 works_on(S,P,H),
 projects('ProductX',P,_,_),
 H >= 10.

Query 2: Get names of all employees who have a dependent with the same first name as their own
first names.

 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_),
 dependent(S,F,_,_,_).

Query 3: Get the names of all employees who are directly supervised by Franklin Wong.

 answer(F,M,L) :-
 employee(F,M,L,_,_,_,_,_,S,_),
 employee('Franklin',_,'Wong',S,_,_,_,_,_,_).

Query 4: Get the names of all employees who work on every project.

 temp1(S,P) :-
 employee(_,_,_,S,_,_,_,_,_,_),
 projects(_,P,_,_).
 temp2(S,P) :-
 works_on(S,P,_).
 temp3(S) :-
 temp1(S,P), not temp2(S,P).
 answer(F,M,L) :-

 37

 employee(F,M,L,S,_,_,_,_,_,_), not temp3(S).

In this query, temp1(S,P) collects all combinations of employees, S, and projects, P;
temp2(S,P) collects only those pairs where employee S works on project P; temp3(S)
collects employees, S, who do not work for a particular project (these employees should not be in
the answer). A second negation in the final rule gets the answers to the query.

Query 5: Get the names of employees who do not work on any project.

 temp1(S) :-
 works_on(S,_,_).
 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_), not temp1(S).

Query 6: Get the names and addresses of employees who work for at least one project located in
Houston but whose department does not have a location in Houston.

 temp1(S) :-
 works_on(S,P,_), project(_,P,'Houston',_).
 temp2(S) :-
 employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
 answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp1(S), temp2(S).

temp1(S) collects employee S who work for a project located in Houston; temp2(S)
collects employees S whose department do not have a location in Houston; the final rule
intersects the two temp predicates to get the answer to the query.

Query 7: Get the names and addresses of employees who work for at least one project located in
Houston or whose department does not have a location in Houston. (Note: this is a slight variation
of the previous query with 'but' replaced by 'or').

 temp1(S) :-
 works_on(S,P,_),
 project(_,P,'Houston',_).
 temp2(S) :-
 employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
 answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp1(S).
 answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp2(S).

Query 8: Get the last names of all department managers who have no dependents.

 38

temp1(S) :-
 dependent(S,_,_,_,_).
answer(L) :-
 employee(_,_,L,S,_,_,_,_,_,_),
 department(_,_,S,_),
 not temp1(S).

To execute the above queries using the Datalog interpreter, each must be placed in a separate file
with a $ symbol appearing at the end of the file. Assume that the queries are placed in files named
q1, q2, …, q8. The following is a terminal session showing the execution of the above
queries:

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q1;

answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,5),
 works_on(S,P,H), H >= 10,
 projects('ProductX',P,_,_).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR)

Number of tuples = 2
John:B:Smith:
Joyce:A:English:

DLOG> exit;
Exiting...

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q2;

answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_),
 dependent(S,F,_,_,_).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR)

Number of tuples = 1
Alec:C:Best:

DLOG> exit;
Exiting...

 39

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q3;

answer(F,M,L) :-
 employee(F,M,L,_,_,_,_,_,S,_),
 employee('Franklin',_,'Wong',S,_,_,_,_,_,_).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR)

Number of tuples = 3
John:B:Smith:
Ramesh:K:Narayan:
Joyce:A:English:

DLOG> exit;
Exiting...

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q4;

temp1(S,P) :-
 employee(_,_,_,S,_,_,_,_,_,_),
 projects(_,P,_,_).
temp2(S,P) :-
 works_on(S,P,_).
temp3(S) :-
 temp1(S,P), not temp2(S,P).
answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_), not temp3(S).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR)

Number of tuples = 0

DLOG> exit;
Exiting...

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q5;

 40

temp1(S) :-
 works_on(S,_,_).
answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_), not temp1(S).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR)

Number of tuples = 2
Bob:B:Bender:
Kate:W:King:

DLOG> exit;
Exiting...

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q6;

temp1(S) :-
 works_on(S,P,_), projects(_,P,'Houston',_).
temp2(S) :-
 employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp1(S), temp2(S).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR,A:VARCHAR)

Number of tuples = 1
Jennifer:S:Wallace:291 Berry, Bellaire, TX:

DLOG> exit;
Exiting...
[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q7;

temp1(S) :-
 works_on(S,P,_),
 projects(_,P,'Houston',_).
temp2(S) :-
 employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp1(S).

 41

answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp2(S).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR,A:VARCHAR)

Number of tuples = 38
James:E:Borg:450 Stone, Houston, TX:
Franklin:T:Wong:638 Voss, Houston, TX:
Jennifer:S:Wallace:291 Berry, Bellaire, TX:
Ramesh:K:Narayan:971 Fire Oak, Humble, TX:
Alicia:J:Zelaya:3321 Castle, Spring, TX:
Ahmad:V:Jabbar:980 Dallas, Houston, TX:
Jared:D:James:123 Peachtree, Atlanta, GA:
Alex:D:Freed:4333 Pillsbury, Milwaukee, WI:
John:C:James:7676 Bloomington, Sacramento, CA:
Jon:C:Jones:111 Allgood, Atlanta, GA:
Justin:null:Mark:2342 May, Atlanta, GA:
Brad:C:Knight:176 Main St., Atlanta, GA:
Evan:E:Wallis:134 Pelham, Milwaukee, WI:
Josh:U:Zell:266 McGrady, Milwaukee, WI:
Andy:C:Vile:1967 Jordan, Milwaukee, WI:
Tom:G:Brand:112 Third St, Milwaukee, WI:
Jenny:F:Vos:263 Mayberry, Milwaukee, WI:
Chris:A:Carter:565 Jordan, Milwaukee, WI:
Kim:C:Grace:6677 Mills Ave, Sacramento, CA:
Jeff:H:Chase:145 Bradbury, Sacramento, CA:
Bonnie:S:Bays:111 Hollow, Milwaukee, WI:
Alec:C:Best:233 Solid, Milwaukee, WI:
Sam:S:Snedden:987 Windy St, Milwaukee, WI:
Nandita:K:Ball:222 Howard, Sacramento, CA:
Bob:B:Bender:8794 Garfield, Chicago, IL:
Jill:J:Jarvis:6234 Lincoln, Chicago, IL:
Kate:W:King:1976 Boone Trace, Chicago, IL:
Lyle:G:Leslie:417 Hancock Ave, Chicago, IL:
Billie:J:King:556 Washington, Chicago, IL:
Jon:A:Kramer:1988 Windy Creek, Seattle, WA:
Ray:H:King:213 Delk Road, Seattle, WA:
Gerald:D:Small:122 Ball Street, Dallas, TX:
Arnold:A:Head:233 Spring St, Dallas, TX:
Helga:C:Pataki:101 Holyoke St, Dallas, TX:
Naveen:B:Drew:198 Elm St, Philadelphia, PA:
Carl:E:Reedy:213 Ball St, Philadelphia, PA:
Sammy:G:Hall:433 Main Street, Miami, FL:
Red:A:Bacher:196 Elm Street, Miami, FL:

DLOG> exit;
Exiting...

 42

[raj@tinman ch2]$ java edu.gsu.cs.dlg.DLOG company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q8;

temp1(S) :-
 dependent(S,_,_,_,_).
answer(L) :-
 employee(_,_,L,S,_,_,_,_,_,_),
 department(_,_,S,_),
 not temp1(S).$

ANSWER(L:VARCHAR)

Number of tuples = 2
Borg:
James:

DLOG> exit;
Exiting...
[raj@tinman ch2]$

Exercises 

1. Specify and execute the following queries using the RA interpreter on the COMPANY

database schema.

a. Retrieve the names of all employees in department 5 who work more than 10 hours
per week on the ‘ProductX’ project.

b. List the names of all employees who have a dependent with the same first name as
themselves.

c. Find the names of employees who are directly supervised by ‘Franklin Wong’.
d. Retrieve the names of employees who work on every project.
e. Retrieve the names of employees who do not work on any project.
f. Retrieve the names and addresses of all employees who work on at least one project

located in Houston but whose department has no location in Houston.
g. Retrieve the last names of all department managers who have no dependents.

2. Consider the following MAILORDER relational schema describing the data for a mail

order company:

parts(pno,pname,qoh,price,olevel)
customers(cno,cname,street,zip,phone)
employees(eno,ename,zip,hdate)
zipcodes(zip,city)

 43

orders(ono,cno,eno,received,shipped)
odetails(ono,pno,qty)

The attribute names are self-explanatory. “qoh” stands for quantity on hand. Specify and
execute the following queries using the RA interpreter on the MAILORDER database
schema.

a. Retrieve the names of parts that cost less than $20.00.
b. Retrieve the names and cities of employees who have taken orders for parts costing

more than $50.00
c. Retrieve the pairs of customer number values of customers who live in the same zip

code.
d. Retrieve the names of customers who have ordered parts only from employees living in

the city of Wichita.
e. Retrieve the names of customers who have ordered all parts costing less than $20.00.
f. Retrieve the names of customers who have not placed a single order.
g. Retrieve the names of customers who have placed exactly two orders.

3. Consider the following GRADEBOOK relational schema describing the data for a grade

book of a particular instructor (Note: The attributes A, B, C, and D store grade cutoffs.)

catalog(cno,ctitle)
students(sid,fname,lname,minit)
courses(term,secno,cno,A,B,C,D)
enrolls(sid,term,secno)

Specify and execute the following queries using the RA interpreter on the GRADEBOOK
database schema.

a. Retrieve the names of students enrolled in the ‘Automata’ class in the term of Fall

1996.
b. Retrieve the SID values of students who have enrolled in CSc226 as well as CSc227.
c. Retrieve the SID values of students who have enrolled in CSc226 or CSc227.
d. Retrieve the names of students who have not enrolled in any class.
e. Retrieve the names of students who have enrolled in all courses in the catalog table.

4. Consider the database consisting of the following relations:

supplier(sno, sname)
part(pno, pname)
project(jno, jname)
supply(sno,pno,jno)

The database records information about suppliers, parts, and projects and includes a ternary
relationship between suppliers, parts, and projects. This relationship is a many-many-many
relationship. Specify and execute the following queries using the RA interpreter.

 44

a. Retrieve part numbers of parts that are supplied to exactly two projects.
b. Retrieve supplier names of suppliers who supply more than two parts to project

‘J1’.
c. Retrieve part numbers of parts that are supplied by every supplier.
d. Retrieve project names of projects that are supplied only by suppliers ‘S1’.
e. Retrieve supplier names of suppliers who supply at least two different parts each to

at least two different projects.

5. Specify and execute the following queries for the database in Exercise 5.16 of the
Elmasri/Navathe text using the RA interpreter.

a. Retrieve the names of students who have enrolled in a course that uses a textbook
published by Addison Wesley.

b. Retrieve the course names of courses which have changed their textbook at least
once.

c. Retrieve the names of departments that only adopt textbooks from Addison Wesley.
d. Retrieve the names of departments that have adopted all textbooks written by

Navathe and published by Addison Wesley in their courses.
e. Retrieve the names of students who have never used a book (in a course) written by

Navathe and published by Addison Wesley.

6. Repeat Exercises 1 through 5 in domain relational calculus (DRC) by using the DRC
interpreter.

7. Repeat Exercises 1 through 5 in Datalog (DLOG) by using the DLOG interpreter.

Fundamentals of Database Systems 7th Edition Elmasri Solutions Manual
Full Download: http://alibabadownload.com/product/fundamentals-of-database-systems-7th-edition-elmasri-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/fundamentals-of-database-systems-7th-edition-elmasri-solutions-manual/

	Chapter 02.pdf (p.1-2)
	lab-manual-1-44.pdf (p.3-46)

