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Exercise 1.1. Many centuries ago, a mariner poured 100 cm
3
 of water into the ocean. As time 

passed, the action of currents, tides, and weather mixed the liquid uniformly throughout the 

earth's oceans, lakes, and rivers. Ignoring salinity, estimate the probability that the next cup of 

water you drink will contain at least one water molecule that was dumped by the mariner. Assess 

your chances of ever drinking truly pristine water. [Some possibly useful facts: Mw for water is 

18.0 kg per kg-mole, the radius of the earth is 6370 km, the mean depth of the oceans is 

approximately 3.8 km and they cover 71% of the surface of the earth. One cup is ~240 ml.] 

 

Solution 1.1. To get started, first list or determine the volumes involved: 

d = volume of water dumped = 100 cm
3
, c = volume of a cup ≈ 240 cm

3
, and 

V = volume of water in the oceans = 



4R2D , 

where, R is the radius of the earth, D is the mean depth of the oceans, and  is the oceans' 

coverage fraction. Here we've ignored the ocean volume occupied by salt and have assumed that 

the oceans' depth is small compared to the earth's diameter. Putting in the numbers produces: 



V  4(6.37106 m)2(3.8103 m)(0.71) 1.3761018 m3 . 

For well-mixed oceans, the probability Po that any water molecule in the ocean came from the 

dumped water is: 



Po 
(100 cm3 of water)

(oceans'  volume)

d

V


1.0104 m3

1.376 1018 m3
 7.271023 , 

Denote the probability that at least one molecule from the dumped water is part of your next cup 

as P1 (this is the answer to the question).  Without a lot of combinatorial analysis, P1 is not easy 

to calculate directly. It is easier to proceed by determining the probability P2 that all the 

molecules in your cup are not from the dumped water. With these definitions, P1 can be 

determined from: P1 = 1 – P2.  Here, we can calculate P2 from: 

P2 = (the probability that a molecule was not in the dumped water)
[number of molecules in a cup]

. 

The number of molecules, Nc, in one cup of water is 



Nc  240cm 3 
1.00g

cm 3


gmole

18.0g
 6.0231023 molecules

gmole
 8.031024

molecules 

Thus, 



P2  (1 Po)Nc  (1 7.271023)8.031024

.  Unfortunately, electronic calculators and modern 

computer math programs cannot evaluate this expression, so analytical techniques are required.  

First, take the natural log of both sides, i.e. 



ln(P2)  Nc ln(1Po)  8.031024 ln(1 7.271023) 

then expand the natural logarithm using ln(1–) ≈ – (the first term of a standard Taylor series 

for 



  0) 



ln(P2) Nc Po 8.031024  7.271023 584 , 

and exponentiate to find: 



P2  e584 10254  ... (!) 

Therefore, P1 = 1 – P2 is very-very close to unity, so there is a virtual certainty that the next cup 

of water you drink will have at least one molecule in it from the 100 cm
3
 of water dumped many 

years ago. So, if one considers the rate at which they themselves and everyone else on the planet 

uses water it is essentially impossible to get a truly fresh cup to drink. 
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Exercise 1.2. An adult human expels approximately 500 ml of air with each breath during 

ordinary breathing.  Imagining that two people exchanged greetings (one breath each) many 

centuries ago, and that their breath subsequently has been mixed uniformly throughout the 

atmosphere, estimate the probability that the next breath you take will contain at least one air 

molecule from that age-old verbal exchange. Assess your chances of ever getting a truly fresh 

breath of air. For this problem, assume that air is composed of identical molecules having Mw = 

29.0 kg per kg-mole and that the average atmospheric pressure on the surface of the earth is 100 

kPa. Use 6370 km for the radius of the earth and 1.20 kg/m
3
 for the density of air at room 

temperature and pressure. 

 

Solution 1.2. To get started, first determine the masses involved. 

m = mass of air in one breath = density x volume = 



1.20kg /m3 0.5103 m3  = 



0.60103 kg 

M = mass of air in the atmosphere = 



4R2 (z)dz
z 0



  

Here, R is the radius of the earth, z is the elevation above the surface of the earth, and (z) is the 

air density as function of elevation.  From the law for static pressure in a gravitational field, 



dP dz  g , the surface pressure, Ps, on the earth is determined from 



Ps  P  (z)gdz
z 0

z

  so 

that:                    



M  4R2 Ps  P

g
 4 (6.37106 m)2(105 Pa)  5.2 1018 kg . 

where the pressure (vacuum) in outer space = P∞ = 0, and g is assumed constant throughout the 

atmosphere.  For a well-mixed atmosphere, the probability Po that any molecule in the 

atmosphere came from the age-old verbal exchange is  



Po 
2 (mass of one breath)

(mass of the whole atmosphere)


2m

M


1.2103 kg

5.21018 kg
 2.311022 , 

where the factor of two comes from one breath for each person.  Denote the probability that at 

least one molecule from the age-old verbal exchange is part of your next breath as P1 (this is the 

answer to the question).  Without a lot of combinatorial analysis, P1 is not easy to calculate 

directly. It is easier to proceed by determining the probability P2 that all the molecules in your 

next breath are not from the age-old verbal exchange. With these definitions, P1 can be 

determined from: P1 = 1 – P2.  Here, we can calculate P2 from: 

P2 = (the probability that a molecule was not in the verbal exchange)
[number of molecules in a breath]

. 

The number of molecules, Nb, involved in one breath is  



Nb 
0.6103 kg

29.0g /gmole


103 g

kg
 6.0231023 molecules

gmole
1.25 1022molecules 

Thus, 



P2  (1 Po)Nb  (1 2.311022)1.251022

.  Unfortunately, electronic calculators and modern 

computer math programs cannot evaluate this expression, so analytical techniques are required.  

First, take the natural log of both sides, i.e. 



ln(P2)  Nb ln(1Po) 1.251022 ln(12.311022) 

then expand the natural logarithm using ln(1–) ≈ – (the first term of a standard Taylor series 

for 



  0) 



ln(P2) Nb  Po 1.251022 2.311022 2.89 , 

and exponentiate to find: 
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

P2  e2.89  0.056. 

Therefore, P1 = 1 – P2 = 0.944 so there is a better than 94% chance that the next breath you take 

will have at least one molecule in it from the age-old verbal exchange.  So, if one considers how 

often they themselves and everyone else breathes, it is essentially impossible to get a breath of 

truly fresh air. 
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Exercise 1.3. In Cartesian coordinates, the Maxwell probability distribution, f(u) = f(u1,u2,u3), of 

molecular velocities in a gas flow with average velocity U = (U1,U2,U3) is  



f (u) 
m

2kBT











3 2

exp 
m

2kBT
uU

2







 

where n is the number of gas molecules in volume V, m is the molecular mass, kB is Boltzmann’s 

constant and T is the absolute temperature. 

a) Verify that U is the average molecular velocity, and determine the standard deviations (1, 

2,3) of each component of U using 



 i  (ui Ui)
2

all u

 f (u)d3u










1 2

 for i = 1, 2, and 3. 

b) Using the molecular version of perfect gas law (1.21), determine n/V at room temperature T = 

295 K and atmospheric pressure p = 101.3 kPa. 

c) Determine n for volumes V = (10 m)
3
, 1 m

3
, and (0.1 m)

3
. 

d) For the i
th

 velocity component, the standard deviation of the average, a,i, over n molecules 

isa,i = 



 i n  when n >> 1. For an airflow at U = (1.0 ms
–1

, 0, 0), compute the relative 

uncertainty, 



2 a ,1 U1
, at the 95% confidence level for the average velocity for the three volumes 

listed in part c). 

e) For the conditions specified in parts b) and d), what is the smallest volume of gas that ensures 

a relative uncertainty in U of less than one percent? 

 

Solution 1.3. a) Use the given distribution, and the definition of an average: 



uave  u
all u

 f (u)d3u 
m

2kBT











3 2

u
–

+


–

+


–

+

 exp 
m

2kBT
uU

2







d3u . 

Consider the first component of u, and separate out the integrations in the "2" and "3" directions. 



(u1)ave 
m

2kBT











3 2

u1

–

+


–

+


–

+

 exp 
m

2kBT
(u1 U1)

2  (u2 U2)2  (u3 U3)2 








du1du2du3

 

          




m

2kBT











3 2

u1

–

+

 exp 
m(u1 U1)

2

2kBT









du1 exp 
m(u2 U2)2

2kBT









du2

–

+

 exp 
m(u3 U3)2

2kBT







–

+

 du3

 

The integrations in the "2" and "3" directions are equal to: 



2kBT m 
1 2

, so 



(u1)ave 
m

2kBT











1 2

u1

–

+

 exp 
m(u1 U1)

2

2kBT









du1
 

The change of integration variable to 



  (u1 U1) m 2kBT 
1 2

 changes this integral to: 



(u1)ave 
1




2kBT

m











1 2

U1











–

+

 exp  2 d  0
1


U1  U1

, 

where the first term of the integrand is an odd function integrated on an even interval so its 

contribution is zero. This procedure is readily repeated for the other directions to find (u2)ave = 

U2, and (u3)ave = U3. Using the same simplifications and change of integration variables 

produces: 



1

2 
m

2kBT











3 2

(u1 U1)
2

–

+


–

+


–

+

 exp 
m

2kBT
(u1 U1)

2  (u2 U2)2  (u3 U3)2 








du1du2du3
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


m

2kBT











1 2

(u1 U1)
2

–

+

 exp 
m(u1 U1)

2

2kBT









du1 
1



2kBT

m









  2

–

+

 exp  2 d . 

The final integral over  is: 



 2, so the standard deviations of molecular speed are 



1  kBT m 
1 2
 2  3 ,  

where the second two equalities follow from repeating this calculation for the second and third 

directions.  

b) From (1.21), 



n V  p kBT  (101.2kPa) [1.3811023 J /K 295K] 2.4871025 m3  

c) From n/V from part b): 



n  2.4871010
 for V = 10

3
 m

3
 = 10

–15
 m

3
 

    



n  2.487107
 for V = 1.0 m

3
 = 10

–18
 m

3
 

    



n  2.487104
 for V = 0.001 m

3
 = 10

–21
 m

3
 

d) From (1.22), the gas constant is R = (kB/m), and R = 287 m
2
/s

2
K for air. Compute: 



2 a,1 U1  2 kBT m n 
1 2

1m /s  2 RT n 
1 2

1m /s  2 287  295 n 
1 2
 582 n . Thus,  

for V = 10
–15

 m
3
 : 



2a,1 U1  = 0.00369, 

 V = 10
–18

 m
3
 : 



2a,1 U1  = 0.117, and  

 V = 10
–21

 m
3
 : 



2a,1 U1  = 3.69. 

e) To achieve a relative uncertainty of 1% we need n ≈ (582/0.01)
2
 = 3.39



10
9
, and this 

corresponds to a volume of 1.36



10
-16

 m
3 
which is a cube with side dimension ≈ 5 m. 
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Exercise 1.4. Using the Maxwell molecular velocity distribution given in Exercise 1.3 with U = 

0, determine the average molecular speed = 



v  u
2

all u

 f (u)d 3u










1 2

 and compare it with c = speed of 

sound in a perfect gas under the same conditions. 

 

Solution 1.4. Use the specified form for 



v  and the Maxwell distribution 



v 2  u
all u


2
f (u)d3u 

m

2kBT











3 2

u1

2  u2

2  u3

2 
–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
. 

This can be re-arranged and expanded into a total of nine one-variable integrations: 

        



v 2 
m

2kBT











3 2

u1

2 exp 
mu1

2

2kBT









du1

–

+

 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

  




m

2kBT











3 2

exp 
mu1

2

2kBT









du1

–

+

 u2

2 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

  




m

2kBT











3 2

exp 
mu1

2

2kBT









du1

–

+

 exp 
mu2

2

2kBT









du2

–

+

 u3

2 exp 
mu3

2

2kBT







–

+

 du3
. 

In this arrangement, the six off-diagonal integrals are equal to 



2kBT m 
1 2

 and the three on-

diagonal integrals are equal to 



2kBT m 
3 2

 2 . Thus,  



v 2 
m

2kBT











3 2

2kBT

m











2kBT

m











3 2


2kBT

m











3 2


2kBT

m











3 2











2
,  or  



v 2 
3kBT

m
. 

From (1.22), R = (kB/m) so 



v  3RT  and this speed has the same temperature dependence but is 

a factor of 



3   larger than the speed of sound in a perfect gas: 



c  RT . 
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Exercise 1.5. By considering the volume swept out by a moving molecule, estimate how the 

mean-free path, l, depends on the average molecular cross section dimension 



d  and the 

molecular number density 



˜ n  for nominally spherical molecules. Find a formula for 



l ˜ n 1 3 (= the 

ratio of the mean-free path to the mean intermolecular spacing) in terms of the molecular volume 

(



d 3) and the available volume per molecule (



1 ˜ n ). Is this ratio typically bigger or smaller than 

one? 

 

Solution 1.5. The combined collision cross section for two spherical molecules having diameter 



d  is 



d 2. The mean free path l is the average distance traveled by a molecule between collisions. 

Thus, the average molecule should experience one collision when 

sweeping a volume equal to 



d 2l . If the molecular number density is 



˜ n , then the volume per molecule is 



˜ n 1
, and the mean intermolecular 

spacing is 



˜ n 1 3
. Assuming that the swept volume necessary to 

produce one collision is proportional to the volume per molecule 

produces: 



d 2l C ˜ n   or  



l C ˜ n d 2 , 
where C is a dimensionless constant presumed to be of order unity. The dimensionless version of 

this equation is: 

     



mean free path

mean intermolecular spacing


l

˜ n 1 3
 l ˜ n 1 3

 

                                                     




C

˜ n 2 3d 2


C

˜ n d 3 
2 3

C
˜ n 1

d 3











2 3

C
volume per molecule

molecular volume











2 3

, 

 

where all numerical constants like  have been combined into C. Under ordinary conditions in 

gases, the molecules are not tightly packed so 



l  ˜ n 1 3
. In liquids, the molecules are tightly 

packed so 



l ~ ˜ n 1 3
. 



d 
 



Fluid Mechanics, 5
th

 Ed.                                                                                                      Kundu, Cohen, and 

Dowling 

Exercise 1.6. In a gas, the molecular momentum flux (MFij) in the j-coordinate direction that 

crosses a flat surface of unit area with coordinate normal direction i is: 



MFij 
n

V
muiu j f (u)d3u

all u

  where f(u) is the Maxwell distribution given in Exercise 1.3. For a 

perfect gas that is not moving on average (i.e. U = 0), show that MFij = p, the pressure, when i = 

j, and that MFij = 0, when i ≠ j. 

 

Solution 1.6. Start from the given equation using the Maxwell distribution: 



MFij 
n

V
muiu j f (u)d3u

all u

 
nm

V

m

2kBT











3 2

uiu j

–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
 

and first consider i = j = 1, and recognize  = nm/V as the gas density (see (1.22)).  

 



MF11  
m

2kBT











3 2

u1

2

–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
 

          



 
m

2kBT











3 2

u1

2 exp 
mu1

2

2kBT









du1

–

+

 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

The first integral is equal to 



2kBT m 
3 2

 2  while the second two integrals are each equal to 



2kBT m 
1 2

. Thus:  

 



MF11  
m

2kBT











3 2

2kBT

m











3 2


2

2kBT

m











1 2
2kBT

m











1 2

 
kBT

m
 RT  p 

where kB/m = R from (1.22). This analysis may be repeated with i = j = 2, and i = j = 3 to find: 

MF22 = MF33 = p, as well.  

 Now consider the case i ≠ j. First note that MFij = MFji because the velocity product 

under the triple integral may be written in either order uiuj = ujui, so there are only three cases of 

interest.  Start with i = 1, and j = 2 to find: 



MF12  
m

2kBT











3 2

u1u2

–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
 

         



 
m

2kBT











3 2

u1 exp 
mu1

2

2kBT









du1

–

+

 u2 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

Here we need only consider the first integral. The integrand of this integral is an odd function 

because it is product of an odd function, u1, and an even function, 



exp mu1

2 2kBT . The 

integral of an odd function on an even interval [–∞,+∞] is zero, so MF12 = 0. And, this analysis 

may be repeated for i = 1 and j = 3, and i = 2 and j = 3 to find MF13 = MF23 = 0. 
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Exercise 1.7. Consider the viscous flow in a channel of width 2b. The channel is aligned in the 

x-direction, and the velocity u in the x-direction at a distance y from the channel centerline is 

given by the parabolic distribution 



u(y) = U0 1 y b 
2 . Calculate the shear stress  as a 

function y, , b, and Uo. What is the shear stress at y = 0? 

 

Solution 1.7. Start from (1.3):



  
du

dy
 

d

dy
Uo 1

y

b











2







 –2Uo

y

b2
. At y = 0 (the location of 

maximum velocity)  = 0. At At y = ±b (the locations of zero velocity), 



  m2Uo b . 
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Exercise 1.8. Estimate the height to which water at 20 C will rise in a capillary glass tube 3 mm 

in diameter that is exposed to the atmosphere. For water in contact with glass the wetting angle is 

nearly 90. At 20 C, the surface tension of an water-air interface is  = 0.073 N/m. (Answer: h = 

0.99 cm.)  

 

Solution 1.8. Start from the result of Example 1.1. 



h 
2 sin

gR


2(0.073N /m)sin(90)

(103 kg /m3)(9.81m /s2)(1.5103 m)
 9.92mm  
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Exercise 1.9. A manometer is a U-shaped tube containing mercury of density m. Manometers 

are used as pressure measuring devices. If the fluid in the tank A has a pressure p and density , 

then show that the gauge pressure in the tank is: p  patm = mgh  ga. Note that the last term on 

the right side is negligible if  << m. (Hint: Equate the pressures at X and Y.) 

 

 
 

Solution 1.9. Start by equating the pressures at X and Y. 

pX = p + ga  = patm + mgh = pY. 

Rearrange to find:  

 p – patm  =  mgh – ga. 
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Exercise 1.10. Prove that if e(T, ) = e(T) only and if h(T, p) = h(T) only, then the (thermal) 

equation of state is (1.22) or p = kT.  

 

Solution 1.10. Start with the first member of (1.18): de = Tds – pd, and rearrange it: 



ds 
1

T
de 

p

T
d 

s

e












de 
s













e

d , 

where the second equality holds assuming the entropy depends on e and . Here we see that: 



1

T


s

e












, and 



p

T


s













e

. 

Equality of the crossed second derivatives of s, 







s

e






















e




e

s













e












, implies: 



 1 T 












e


 p T 
e












. 

However, if e depends only on T, then (∂/∂)e = (∂/∂)T, thus 



 1 T 












e


 1 T 












T

 0 , so



 p T 
e












 0 , and this can be integrated once to find: p/T = f1(), where f1 is an undetermined 

function.  

 Now repeat this procedure using the second member of (1.18), dh = Tds + dp. 



ds 
1

T
dh 



T
dp 

s

h











p

dh 
s

p











h

dp. 

Here equality of the coefficients of the differentials implies: 



1

T


s

h











p

, and 






T


s

p











h

. 

So, equality of the crossed second derivatives implies: 



 1 T 
p











h

 
  T 
h











p

. 

Yet, if h depends only on T, then (∂/∂p)h = (∂/∂p)T, thus 



 1 T 
p











h


 1 T 
p











T

 0, so




  T 
h











p

 0, and this can be integrated once to find: /T = f2(p), where f2 is an undetermined 

function. 

 Collecting the two results involving f1 and f2, and solving for T produces: 



p

f1()
 T 



f2( p)
   or   



pf2(p) f1()  k , 

where k must be is a constant since p and  are independent thermodynamic variables. 

Eliminating f1 or f2 from either equation of the left, produces p = kT. 

 And finally, using both versions of (1.18) we can write: dh – de = dp + pd = d(p). 

When e and h only depend on T, then dh = CpdT and de = CvdT, so 

dh – de = (Cp – Cv)dT = d(p) = kdT ,  thus  k = Cp – Cv = R, 

where R is the gas constant. Thus, the final result is the perfect gas law: p = kT/ = RT. 
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Exercise 1.11. Starting from the property relationships (1.18) prove (1.25) and (1.26) for a 

reversible adiabatic process when the specific heats Cp and Cv are constant. 

 

Solution 1.11. For an isentropic process: de = Tds – pd = –pd, and dh = Tds + dp = +dp. 

Equations (1.25) and (1.26) apply to a perfect gas so the definition of the specific heat capacities 

(1.14), and (1.15) for a perfect gas, dh = CpdT, and de = CvdT , can be used to form the ratio 

dh/de: 



dh

de


CpdT

CvdT


Cp

Cv

   
dp

pd
  or  




d


 

d




dp

p
. 

The final equality integrates to: ln(p) = ln() + const which can be exponentiated to find: 

p = const., 

which is (1.25). The constant may be evaluated at a reference condition po and o to find: 



p po   o 

and this may be inverted to put the density ratio on the left  



 o  p po 
1 

, 

which is the second member of (1.26). The remaining relationship involving the temperature is 

found by using the perfect gas law, p = RT, to eliminate  = p/RT: 





o


p RT

po RTo


pTo

poT


p

po











1 

  or  



T

To


p

po

p

po











1 


p

po











( 1) 

, 

which is the first member of (1.26).   
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Exercise 1.12. A cylinder contains 2 kg of air at 50 C and a pressure of 3 bars. The air is 

compressed until its pressure rises to 8 bars. What is the initial volume? Find the final volume for 

both isothermal compression and isentropic compression.  

 

Solution 1.12. Use the perfect gas law but explicitly separate the mass M of the air and the 

volume V it occupies via the substitution  = M/V: 

p = RT = (M/V)RT. 

Solve for V at the initial time: 

Vi = initial volume = MRT/pi = (2 kg)(287 m
2
/s

2
K)(273 + 50°)/(300 kPa) = 0.618 m

3
. 

For an isothermal process: 

Vf = final volume = MRT/pf = (2 kg)(287 m
2
/s

2
K)(273 + 50°)/(800 kPa) = 0.232 m

3
. 

For an isentropic process: 



V f Vi pi p f 
1 

0.618m3 300kPa 800kPa 
11.4

 0.307m3. 
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Exercise 1.13. Derive (1.29) starting from the arguments provided at the beginning of Section 

1.10 and Figure 1.8.  

 

Solution 1.13. Take the z axis vertical, and consider a small fluid element m of fluid having 

volume V that starts at height z0 in a stratified fluid medium having a vertical density profile = 

(z), and a vertical pressure profile p(z). Without any vertical displacement, the small mass and 

its volume are related by m = (z0)V. If the small mass is displaced vertically a small distance 

 via an isentropic process, its density will change isentropically according to: 



a(z0 )  (z0) da dz   ... 

where da/dz is the isentropic density at z0. For a constant m, the volume of the fluid element 

will be: 



V 
m

a


m

(z0) da dz   ...


m

(z0)
1

1

(z0)

da

dz
  ...









 

The background density at z0 +  is: 



(z0 )  (z0) d dz   ... 

If g is the acceleration of gravity, the (upward) buoyant force on the element at the vertically 

displaced location will be g(z0 + )V, while the (downward) weight of the fluid element at any 

vertical location is gm. Thus, a vertical application Newton's second law implies: 



m
d2

dt2
 g(z0  )V  gm  g (z0) d dz   ... 

m

(z0)
1

1

(z0)

da

dz
  ...









 gm , 

where the second equality follows from substituting for (z0 + ) and V from the above 

equations. Multiplying out the terms in (,)-parentheses and dropping second order terms 

produces: 



m
d2

dt 2
 gm 

gm

(z0)

d

dz
 

gm

(z0)

da

dz
  ... gm 

gm

(z0)

d

dz


da

dz









  

Dividing by m and moving all the terms to the right side of the equation produces: 



d2

dt 2


g

(z0)

d

dz


da

dz









  0 

Thus, for oscillatory motion at frequency N, we must have  



N 2  
g

(z0)

d

dz


da

dz









, 

which is (1.29).  
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Exercise 1.14. Starting with the hydrostatic pressure law (1.8), prove (1.30) without using 

perfect gas relationships. 

 

Solution 1.14. The adiabatic temperature gradient dTa/dz, can be written terms of the pressure 

gradient: 



dTa

dz


T

p











s

dp

dz
 g

T

p











s

 

where the hydrostatic law dp/dz = –g has been used to reach the second equality. Here, the final 

partial derivative can be exchanged for one involving  = 1/ and s, by considering: 



dh 
h

s











p

ds
h

p











s

dp  Tdsdp . 

Equality of the crossed second derivatives of h, 





p

h

s











p











s




s

h

p











s











p

, implies: 



T

p











s




s











p




T











p

T

s











p




T











p

s

T











p

, 

where the second two equalities are mathematical manipulations that allow the introduction of 



  
1





T











p

 


T











p

,  and  



Cp 
h

T











p

 T
s

T











p

. 

Thus,  



dTa

dz
 g

T

p











s

 g


T











p

s

T











p

 g
Cp

T









 

gT

Cp

. 
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Exercise 1.15. Assume that the temperature of the atmosphere varies with height z as T = T0  

Kz where K is a constant. Show that the pressure varies with height as 



p = p0

T0

T0  Kz











g/KR

,  where 

g is the acceleration of gravity and R is the gas constant for the atmospheric gas. 

 

Solution 1.15. Start with the hydrostatic and perfect gas laws, dp/dz = –g, and p = RT, 

eliminate the density, and substitute in the given temperature profile to find:  



dp

dz
 g  

p

RT
g  

p

R(T0  Kz)
g  or  



dp

p
 

g

R

dz

(T0  Kz)
. 

The final form may be integrated to find: 



ln p  
g

RK
ln T0 Kz  const. 

At z = 0, the pressure must be p0, therefore: 



ln p0  
g

RK
ln T0  const. 

Subtracting this from the equation above and invoking the properties of logarithms produces: 



ln
p

p0









 

g

RK
ln

T0 Kz

T0









 

Exponentiating produces: 



p

p0

=
T0  Kz

T0











g/KR

, which is the same as: 



p = p0

T0

T0 Kz











g/KR

. 
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Exercise 1.16. Suppose the atmospheric temperature varies according to: T = 15  0.001z, where 

T is in degrees Celsius and height z is in meters. Is this atmosphere stable? 

 

Solution 1.16. Compute the temperature gradient: 



dT

dz


d

dz
(150.001z)  0.001

C

m
 1.0

C

km
. 

For air in the earth's gravitational field, the adiabatic temperature gradient is: 



dTa

dz
 

gT

Cp


(9.81m /s2)(1/T)T

1004m2 /s2C
 9.8

C

km
. 

Thus, the given temperature profile is stable because the magnitude of its gradient is less than 

the magnitude of the adiabatic temperature gradient.  
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Exercise 1.17. Consider the case of a pure gas planet where the hydrostatic law is: 



dp dz  (z)Gm(z) z2 . Here G is the gravitational constant, and 



m(z)  4 ( ) 2

o

z

 d  is the 

planetary mass up to distance z from the center of the planet. If the planetary gas is perfect with 

gas constant R, determine (z) and p(z) if this atmosphere is isothermal at temperature T. Are 

these vertical profiles of  and p valid as z increases without bound? 

 

Solution 1.17. Start with the given relationship for m(z), differentiate it with respect to z, and use 

the perfect gas law, p = RT to replace the  with p. 



dm

dz


d

dz
4 ( ) 2d

0

z










 4z2(z)  4z2 p(z)

RT
. 

Now use this and the hydrostatic law to obtain a differential equation for m(z),  



dp

dz
 (z)

Gm(z)

z2


d

dz

RT

4z2

dm

dz









 

1

4z2

dm

dz











Gm(z)

z2
. 

After recognizing T as a constant, the nonlinear second-order differential equation for m(z) 

simplifies to: 



RT

G

d

dz

1

z2

dm

dz









 

1

z4
m

dm

dz
. 

This equation can be solved by assuming a power law: m(z) = Az
n
.  When substituted in, this trial 

solution produces: 



RT

G

d

dz
z2Anz n1 

RT

G
n  3 Anz n4  z4 A2nz2n1

. 

Matching exponents of z across the last equality produces: n – 4 = 2n – 5, and this requires n = 1. 

For this value of n, the remainder of the equation is: 



RT

G
2 Az3  z4 A2z1, which reduces to: 



A  2
RT

G
. 

Thus, we have m(z) = 2RTz/G, and this leads to: 



(z) 
2RT

G

1

4z2
  , and  



p(z) 
2R2T 2

G

1

4z2
. 

Unfortunately, these profiles are not valid as z increases without bound, because this leads to an 

unbounded planetary mass.  
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Exercise 1.18. Consider a heat-insulated enclosure that is separated into two compartments of 

volumes V1 and V2, containing perfect gases with pressures and temperatures of p1, p2, and T1, T2, 

respectively. The compartments are separated by an impermeable membrane that conducts heat 

(but not mass). Calculate the final steady-state temperature assuming each gas has constant 

specific heats.  

 

Solution 1.18. Since no work is done and no heat is transferred out of the enclosure, the final 

energy Ef is the sum of the energies, E1 and E2, in the two compartments. 

E1 + E2 = Ef   implies  1V1Cv1T1 + 2V2Cv2T2 = (1V1Cv1 + 2V2Cv2)Tf, 

where the Cv's are the specific heats at constant volume for the two gases. The perfect gas law 

can be used to find the densities: 1 = p1/R1T1 and 2 = p2/R2T2, so  

p1V1Cv1/R1 + p2V2Cv2/R2 = (p1V1Cv1/R1T1 + p2V2Cv2/R2T2)Tf. 

A little more simplification is possible, Cv1/R1 = 1/(1 – 1) and Cv2/R1 = 1/(2 – 1). Thus, the final 

temperature is: 



Tf 
p1V1 (1 1) p2V2 (2 1)

p1V1 (1 1)T1  p2V2 (2 1)T2 
. 
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