Engineering Economy 17th Edition Sullivan Solutions Manual

Full Download: https://alibabadownload.com/product/engineering-economy-17th-edition-sullivan-solutions-manual/

Solutions To Chapter 3 Problems

3-1 One square meter converts to 10.764 square feet. So the area of the office building in square feet is 107,640. Therefore the average annual cost of heating and cooling this area is $(107,640 \text{ ft}^2)(\$3.50/\text{ft}^2) = \$376,740$.

3-2 A representative cost and revenue structure for construction, 10-years of ownership and use, and the sale of a home is:

Cost or Revenue Category	Typical Cost and Revenue Elements
Captial Investment	Real estate (lot) cost; architect/engineering fees;
	construction costs (labor,material, other); working capital
	(tools, initial operating supplies, etc.); landscaping costs.
Annual Operating and	Utilities (electricity, water, gas, telephone, garbage); cable
Maintenance Costs	TV; painting (interior and exterior); yard upkeep (labor
	and materials); routine maintenance (furnace, air
	conditioner, hot water heater, etc.); insurance; taxes.
Major Repair or	Roof; furnace; air conditioner; plumbing fixtures; garage
Replacement Costs	door opener; driveway and sidewalks; patio; and so on.
Real Estate Fees	Acquisition; selling.
Asset Sales	Sale of home (year 10).

3-3	The estimated cost is $12,000 + (10/\text{ft}^2)(8.5 \text{ ft})(15 \text{ ft})(500)(1.8) = 1,159,500$

3-4 (a) (62 million tons per year) (0.05) = 3.1 million tons of greenhouse gas per year

$$\frac{\$1.2 \text{ billion}}{3.1 \text{ million tons per year}} = \$387.10 \text{ per ton}$$

(b) (3 billion tons per year) (0.03) = 90 million tons per year

$$\frac{\$1.2 \text{ billion}}{3.1 \text{ million tons/year}} = \frac{\$X \text{ billion}}{90 \text{ million tons}}$$
$$X = \$34.84 \text{ billion}$$

3-5 $(24,000 \text{ ft}^2)(60,000 \text{ Btu/ft}^2) = 1,440 \text{ million Btu during the heating season.}$ This is 1,440 thousand cubic feet of natural gas, and the cost would be $(1,440,000 \text{ ft}^3)(\$10.50/1000 \text{ ft}^3) = \$15,120 \text{ for the heating season.}$

Side note: The building uses 0.3 million kWhr of electricity \times \$0.10 per kWhr = \$30,000 to cool the area. The total bill will be about \$45,000. The owner must take this into account when she decides on a price to charge per square foot of leased space.

- **3-6** (a) Standard electric bill = (400 kWhr)(12 months/year)(\$0.10/kWhr) = \$480 per year. Green power bill = (12 months/year)(\$4/month) = \$48 per year. Total electric bill = \$528 per year.
 - (b) \$528 / 4,800 kWhr = \$0.11 per kWhr (a 10% increase due to green power usage)
 - (c) The technology used to capture energy from solar, wind power and methane is more expensive than traditional power generation methods (coal, natural gas, and so on).

3-7	The replacement	cost in late 2017	can be estimated	as follows
-----	-----------------	-------------------	------------------	------------

$$C_{2017} = C_{2006} (I_{2017}/I_{2006})$$

= \$30,000 (265/149)
= \$53,356

3-8	The cost of the water filtration system in 2019 is:
	$C_{2019} = C_{2014} (\bar{I}_{2019} / \bar{I}_{2014}) = \$250,000 (298/220) = \$338,636$

3-9
$$\bar{I}_{2014} = \frac{0.70\left(\frac{62}{41}\right) + 0.05\left(\frac{57}{38}\right) + 0.25\left(\frac{53}{33}\right)}{0.70 + 0.05 + 0.25} \times 100 = 153.5$$

3-10 $(C_A/C_B) = (S_A/S_B)^x$

 $C_A = \$800,000 (30,000 / 20,000)^{0.83} = 800,000(1.4)$

 $C_A = \$1,120,000$ for the larger warehouse

3-11 Let
$$C_A = cost ext{ of new boiler}, ext{ } S_A = 1.42X$$
 $C_B = cost ext{ of old boiler, today} ext{ } S_B = X$

$$C_B = \$181,000 \left(\frac{221}{162}\right) = \$246,920$$

$$C_A = \$246,920 \left(\frac{1.42X}{X}\right)^{0.8} = \$326,879$$

Total cost with options = \$326,879 + \$28,000 = \$354,879

3-12 The estimated capital investment of the seven MW solar farm in four years is:

$$14 \text{ million (F/P, 8\%, 4)} = 14 \text{ million (1.3605)} = 19.047 \text{ million}$$

Next, the capital investment (C) for the six MW solar farm in four years can be estimated by using Equation 3-4:

$$C = $19.047 \text{ million } (6/7)^{0.85} = $16.708 \text{ million}$$

3-13 (a)
$$C_{\text{now}}(80\text{-kW}) = \$160,000 \left(\frac{194}{187}\right) = \$165,989$$

$$C_{\text{now}}(120\text{-kW}) = \$165,989 \left(\frac{120}{80}\right)^{0.6} = \$211,707$$

Total Cost =
$$$211,707 + $18,000 = $229,707$$

(b)
$$C_{\text{now}}(40\text{-kW}) = \$165,989 \left(\frac{40}{80}\right)^{0.6} = \$109,512$$

Total Cost =
$$$109,512 + $18,000 = $127,512$$

3-14 Let
$$C_A = cost \ of \ new \ plant$$
 $S_A = 450,000 \ gal/yr$

$$C_B = cost of similar plant$$
 $S_B = 250,000 gal/yr$

$$= $6,000,000$$
 $X = 0.59$

$$C_A = \$6,000,000 \left(\frac{450,000}{250,000}\right)^{0.59} = \$8,487,153$$

3-15 $$600,000 = $300,000 (100,000 /40,000)^x$

$$2 = 2.5^{x}$$

$$\log 2 = x \log 2.5$$

$$x = 0.756$$

This is the cost-capacity factor for this technology.

3-16 (a) (500-425) / 500 = 0.15

85% learning curve

(b)
$$n = \log 0.85 / \log 2 = -0.234$$

$$Z_4 = 500(4)^{-0.234}$$

= 361.5 hours

(c)
$$Z_1 = 500 hrs$$

$$Z_2 = 425 hrs$$

$$Z_3 = 500(3)^{-0.234} = 387 \text{ hrs}$$

$$Z_4 = 361.5 hrs$$

$$\Sigma Z_i = 1,673.5$$

Average
$$\$ = (1673.5/4)(\$15) = \$6,275.63$$

3-17
$$n = \log(0.9) / \log 2 = -0.152$$

$$Z_6 = 10 (6)^n$$

$$=10[(6)^{-0.152}]$$

3-18
$$n = \log(0.85) / \log 2 = -0.2345$$

$$C_x = T_x / x$$
 so (x) $C_x = T_x$, or $T_x = 5(15.882 \text{ hrs.}) = 79.41 \text{ hours}$

We know that
$$T_x = K \left[1^{-0.2345} + 2^{-0.2345} + 3^{-0.2345} + 4^{-0.2345} + 5^{-0.2345} \right]$$

so
$$79.41 = 4.031 \text{ K}$$
, or $K = 19.70 \text{ hours}$

Now with equation 3-5 we can determine Z_{20} :

$$Z_{20} = 19.70 \ (20^{-0.2345}) = 9.76 \ hours$$

3-19 (a)
$$\sum x = 687$$

$$\Sigma y = 2,559$$

$$\sum xy = 442,844$$

$$\sum x^2 = 118,831$$

$$\bar{x} = 687/4 = 171.75$$

$$\bar{y} = 2,559/4 = 639.75$$

$$\hat{b} = [4(442,844) - 687(2,559)] / [4(118,831) - 687^2] = 3.977$$

$$\hat{a} = [2,559 - 3.977(687)] / 4 = -43.308$$

$$\hat{y} = -43.308 + 3.977(x)$$

(b)
$$\hat{y} = -43.308 + 3.977(170)$$

$$\hat{y} = \$632.78$$

3-20
$$\sum x = 1,732$$

$$\sum y = 3,532$$

$$\sum xy = 644,176$$

$$\sum x^2 = 325,586$$

$$b = [644,176 - 173.2(3,532)] / [325,586 - 173.2(1,732)] = 1.2668$$

$$a = 353.2 - 1.2668(173.2) = 133.79$$

So
$$y = 133.79 + 1.2668x$$

When x = 198,

$$y = 133.79 + 1.2668(198) = 384.6$$
 (call it 385 units per quarter)

3-21 The following table facilitates the intermediate calculations needed to compute the values of b_0 and b_1 using Equations (3-8) and (3-9).

I	x_i	y_i	x_i^2	x_iy_i
1	14,500	800,000	210,250,000	11,600,000,000
2	15,000	825,000	225,000,000	12,375,000,000
3	17,000	875,000	289,000,000	14,875,000,000
4	18,500	972,000	342,250,000	17,982,000,000
5	20,400	1,074,000	416,160,000	21,909,600,000
6	21,000	1,250,000	441,000,000	26,250,000,000
7	25,000	1,307,000	625,000,000	32,675,000,000
8	26,750	1,534,000	715,562,500	41,034,500,000
9	28,000	1,475,500	784,000,000	41,314,000,000
10	30,000	1,525,000	900,000,000	45,750,000,000
Totals	216,150	11,637,500	4,948,222,500	265,765,100,000

$$b_1 = \frac{(10)(265,765,100,000) - (216,150)(11,637,500)}{(10)(4,948,222,500) - (216,150)^2} = 51.5$$

$$b_0 = \frac{11,637,500 - (51.5)(216,150)}{10} = 50,631$$

(a) The resulting CER relating supermarket building cost to building area (x) is:

$$Cost = 50,631 + 51.5x$$

So the estimated cost for the 23,000 ft² store is:

$$Cost = \$50,631 + (\$51.5/ft^2)(23,000 \text{ ft}^2) = \$1,235,131$$

(b) The CER developed in part (a) relates the cost of building a supermarket to its planned area using the following equation:

$$Cost = 50,631 + 51.5x$$

Using this equation, we can predict the cost of the ten buildings given their areas.

i	x_i	y_i	$Cost_i$	$(y_i - Cost_i)^2$	$(x_{i}-\bar{x})(y_{i}-\bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \overline{y})^2$
1	14,500	800,000	797,345	7,048,179	2,588,081,250	50,623,225	132,314,062,500
2	15,000	825,000	823,094	3,633,147	2,240,831,250	43,758,225	114,751,562,500
3	17,000	875,000	926,089	2,610,081,256	1,332,581,250	21,298,225	83,376,562,500
4	18,500	972,000	1,003,335	981,896,725	597,301,250	9,703,225	36,768,062,500
5	20,400	1,074,000	1,101,181	738,780,429	109,046,250	1,476,225	8,055,062,500
6	21,000	1,250,000	1,132,079	13,905,356,010	-53,043,750	378,225	7,439,062,500
7	25,000	1,307,000	1,338,069	965,288,881	484,901,250	11,458,225	20,520,562,500
8	26,750	1,534,000	1,428,190	11,195,807,942	1,901,233,750	26,368,225	137,085,062,500
9	28,000	1,475,500	1,492,562	291,099,988	1,990,523,750	40,768,225	97,188,062,500
10	30,000	1,525,000	1,595,557	4,978,246,304	3,029,081,250	70,308,225	130,501,562,500
Totals	216,150	11,637,500	11,637,500	35,677,238,861	14,220,537,500	276,140,250	767,999,625,000

$$\bar{x} = \frac{1}{10}(216,150) = 21,615$$
 $\bar{y} = \frac{1}{10}(11,637,500) = 1,163,750$

Using Equations (3-10) and (3-11), we can compute the standard error and correlation coefficient for the CER.

$$SE = \sqrt{\frac{35,677,238,861}{10 - 2}} = \underline{66,780}$$

$$R = \frac{14,220,537,500}{\sqrt{(276,140,250)(767,999,625,000)}} = \underline{0.9765}$$

3-22 x_i = weight of order (lbs) y_i = packaging and processing costs (\$)

(a)
$$y = b_0 + b_1 x$$

$$\sum x_i = 2530 \quad \bar{x} = 253 \qquad \sum x_i^2 = 658,900$$

$$\sum y_i = 1024$$
 $\overline{y} = 102.4$ $\sum y_i^2 = 106,348$

$$\sum x_i y_i = 264,320$$

$$b_1 = \frac{264,320 - (253)(1024)}{658,900 - (253)(2530)} = 0.279$$

$$b_0 = 102.4 - (0.279)(253) = 31.813;$$
 $y = 31.813 + 0.279x$

(b)
$$R = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

$$S_{xy} = 264,320 - (2530)(1024)/10 = 5,248$$

$$S_{xx} = 658,900 - (2530)^2/10 = 18,810$$

$$S_{vv} = 106,348 - (1024)^2/10 = 1,490.4$$

$$R = \frac{5248}{\sqrt{(18,810)(1490.4)}} = \underline{0.99}$$

(c)
$$y = 31.813 + (0.279)(250) = $101.56$$

3-23
$$\operatorname{Cost}_{150 \text{ ft}} = \$15,250 \left(\frac{150}{250}\right)^{0.6} \left(\frac{1029}{830}\right) = \$13,915$$

3-24	$$127(1.19)^5 = 303 per square foot in five years. The total estimated cost in five years is $(320,000 \text{ ft}^2)(\$303/\text{ft}^2) = \$96,960,000$. It's a good idea to build this facility today and then, if needed, add on the additional space five years later.

3-25	The amount of the FICO score affected is $(0.35)(720) = 252$. If this drops by 10%, the payment history score will be $(0.90)(252) = 227$ and the overall FICO score will be 695. This lower value could adversely affect the interest rate you'll be quoted on your next loan.

Boiler Cost = \$300,000 $\left(\frac{10mW}{6mW}\right)^{0.8}$ = \$451,440 Generator Cost = \$400,000 $\left(\frac{9mW}{6mW}\right)^{0.6}$ = \$510,170 Tank Cost = \$106,000 $\left(\frac{91,500gal}{80,000gal}\right)^{0.66}$ = \$115,826 3-26

Total Cost = (2)(\$451,440) + (2)(\$510,170) + \$115,826 + \$200,000 = \$2,239,046

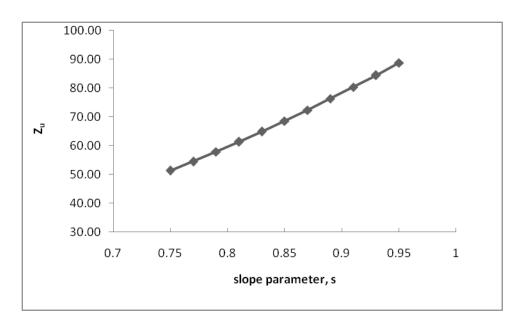
3-27 The following spreadsheet was used to calculate a 2019 estimate of \$320,274,240 for the plant.

Element					
Code	Units/Factors		Price/Unit	Subtotal	Totals
1.1.1-2	600		\$2,000	\$ 1,200,000	
1.1.3				\$ 3,000,000	
1.1					\$ 4,200,000
1.2-3	2.3969 ^a	\$	110,000,000	\$ 263,659,000	\$ 263,659,000
1.4	4.4727 ^b	\$	5,000,000	\$ 22,363,500	\$ 22,363,500
1.5.1-3					
labor	80,390 ^c	\$	60	\$ 4,823,400	
materials				\$ 15,000,000	
1.5.4	600	\$	1,500	\$ 900,000	
1.5					\$ 20,723,400
1.9	3%	\$	310,944,672		\$ 9,328,340
TOTAL ES	STIMATED COST	' IN	V 1996		\$ 320,274,240

^a Factor value for boiler and support system (WBS elements 1.2 and 1.3):

$$\left(\frac{492}{110}\right)\left(\frac{1}{2}\right)^{0.9} = 2.3969$$

$$\left(\frac{492}{110}\right) = 4.4727$$


^c Labor time estimate for the 3rd facility (WBS elements 1.5.1, 1.5.2, and 1.5.3):

$$K = 95,000 \text{ hours}, s = 0.9, n = \log(0.9)/\log(2) = -0.152$$

$$Z_3 = 95,000(3)^{-0.152} = 80,390 \text{ hours}$$

^b Factor value for the coal storage facility (WBS element 1.4):

	100
K	100
u	5
S	Z _u
0.75	51.27
0.77	54.51
0.79	57.85
0.81	61.31
0.83	64.88
0.85	68.57
0.87	72.37
0.89	76.29
0.91	80.33
0.93	84.49
0.95	88.77

- **3-29** (a) Based on the constant reduction rate of 8% each time the number of homes constructed doubles, a 92% learning curve applies to the situation. The cumulative average material cost per square foot for the first five homes is \$24.12.
 - **(b)** The estimated material cost per square foot for the 16th home is \$19.34.

S		0.92				
K		\$27				
	М	aterial	Cu	mulative	Cur	nulative
Home	Cos	t per ft²		Sum	A۱	/erage
1	\$	27.00	\$	27.00	\$	27.00
2	\$	24.84	\$	51.84	\$	25.92
3	\$	23.66	\$	75.50	\$	25.17
4	\$	22.85	\$	98.35	\$	24.59
5	\$	22.25	\$	120.60	\$	24.12
6	\$	21.76	\$	142.36	\$	23.73
7	\$	21.37	\$	163.73	\$	23.39
8	\$	21.02	\$	184.75	\$	23.09
9	\$	20.73	\$	205.48	\$	22.83
10	\$	20.47	\$	225.95	\$	22.59
11	\$	20.23	\$	246.18	\$	22.38
12	\$	20.02	\$	266.21	\$	22.18
13	\$	19.83	\$	286.04	\$	22.00
14	\$	19.66	\$	305.69	\$	21.84
15	\$	19.49	\$	325.19	\$	21.68
16	\$	19.34	\$	344.53	\$	21.53

	Α	В	С	D	Е	F	G	Н	I	J	K
1	Spacecraft	Weight	Cost (millions)								
2	0	100	\$ 600								
3	1	400	\$ 278								
4	2	530	\$ 414								
5	3	750	\$ 557								
6	4	900	\$ 689								
7	5	1,130	\$ 740								
8	6	1,200	\$ 851								
9											
10	SUMMARY OUTPUT										
11											
12	Regression	Statistics									
	Multiple R	0.705850276									
	R Square	0.498224612									
	Adjusted R Square	0.397869535									
	Standard Error	151.9036833									
	Observations	7									
18											
	ANOVA										
20	7.1.10 17.1	df	SS	MS	F	Significance F					
	Regression	1	114557.2121	114557.212		0.076342997					
	Residual	5		23074.729	1.0010170	0.070012007					
	Total	6		2007 1.720							
24	Total	·	220000.0071								
25		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
	Intercept	341.9170907	125.2152843	2.73063383		20.04148132	663.7927001	20.04148132	663.7927001		
	Weight	0.346423227	0.155476261	2.22814225	0.0412431	-0.053240574		-0.053240574	0.746087027		
	ŭ					0.0002.007.	0.1 10001021	0.0002 1007 1	0.7 10007 027		
28	3					0.0002.001	0.7 10007 027	0.0002 1007 1	0.7 10007 027		
28 29	<u> </u>					0.0002.007.1	0.1 10001021	0.0002 1007 1	0.7 10007 027		
28 29 30										06	
28 29 30 31	RESIDUAL OUTPUT							Predicto		es	
28 29 30 31 32	RESIDUAL OUTPUT	Prodicted Cost								es	
28 29 30 31 32 33	RESIDUAL OUTPUT Observation	Predicted Cost	Residuals							es	
28 29 30 31 32 33 34	RESIDUAL OUTPUT Observation 1	376.5594133	Residuals 223.4405867							es	
28 29 30 31 32 33 34 35	RESIDUAL OUTPUT Observation 1 2	376.5594133 480.4863813	Residuals 223.4405867 -202.4863813		\$900					es	•
28 29 30 31 32 33 34 35 36	RESIDUAL OUTPUT Observation 1 2 3	376.5594133 480.4863813 525.5214008	Residuals 223.4405867 -202.4863813 -111.5214008		\$900 \$800					es	•
28 29 30 31 32 33 34 35 36 37	RESIDUAL OUTPUT Observation 1 2 3 4	376.5594133 480.4863813 525.5214008 601.7345106	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063		\$900 \$800					es	•
28 29 30 31 32 33 34 35 36 37	RESIDUAL OUTPUT Observation 1 2 3 4 5	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539		\$900 \$800 \$700					es	•
28 29 30 31 32 33 34 35 36 37 38 39	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40	RESIDUAL OUTPUT Observation 1 2 3 4 5	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539		\$900 \$800 \$700 \$600					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274	Cost (millions)	\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100					es	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200	Observ	red vs.	Predicte	ed Valu	•	•
28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100	Observ	red vs.	Predicte	ed Valu	•	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 48 49 50 51	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100	Observ	red vs.		ed Valu	•	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100	Observ	red vs.	Predicte	ed Valu	•	1,300
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100	Observ	red vs.	Predicte	ed Valu	•	2,30
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100	Observ	red vs.	Predicte	ed Valu	•	•
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53	RESIDUAL OUTPUT Observation 1 2 3 4 5 6	376.5594133 480.4863813 525.5214008 601.7345106 653.6979946 733.3753367	Residuals 223.4405867 -202.4863813 -111.5214008 -44.73451063 35.30200539 6.624663274		\$900 \$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100	Observ	red vs.	Predicte	ed Valu	•	2,30

3-31	Other cost factors include maintenance, packaging, solution presents a before-tax economic analysis.	supervision,	materials, among others.	Also, the case

3-32	Left as an exercise for the student. However, by observation, it appears that the factory overhead and factory labor are good candidates since they comprise the largest percentage contributions to the per unidemanufacuring cost.

3-33 A 50% increase in labor costs equates to a factor of 15%; a 90% increase in Transportation equates to a factor of 38%. The corresponding demnaufacturing cost per unit is \$5.19. The per unit cost of using the outside contractor (i.e., the target cost) is \$11.70. Should the proposed demanufacturing method be adopted, the revised per unit cost savings is \$6.51 for a 55.6% reduction over the per unit cost for the outside contractor.

		Unit Elements		Factor Estimates		Row	
	DE-MANUFACTURING COST ELEMENTS	Units	Cost/Unit	Factor	of Row		Total
A:	Factory Labor	24.5 hrs	\$ 12.00/hr			\$	294.00
B:	Quality Costs - Training			15%	Α	\$	44.10
C:	TOTAL LABOR					\$	338.10
D:	Factory Overhead - Set up Costs			150%	С	\$	507.15
E:	Transportation Cost			38%	С	\$	192.72
F:	TOTAL DIRECT CHARGE					\$	699.87
G:	Facitily Rental						-
H:	TOTAL DE-MANUFACTURING	COST				\$	1,037.97
l:	Quantity - Lot Size						200
J:	De-manufacturing Cost/Unit					\$	5.19
	Outside Cost/Unit - Target Cost	\$11.70					

3-34 The estimate of direct labor hours is based on the time to produce the 50th unit.

K = 1.76 hours s = 0.8 (80% learning curve) n = $(\log 0.80)/(\log 2) = -0.322$ $Z_{50} = 1.76(50)^{-0.322} = 0.5$ hours

= (\$15/hr)(0.5 hr/widget)	= \$7.50 / widget
= \$375 / 100 widgets	= \$3.75 / widget
= (1.25)(\$7.50 / widget)	= \$9.375 / widget
= (0.75)(\$7.50 / widget)	= \$5.625 / widget
	= \$26.25 / widget
= (0.20)(\$26.25 / widget)	= \$5.25 / widget
	= \$31.50 / widget
	= \$375 / 100 widgets = (1.25)(\$7.50 / widget) = (0.75)(\$7.50 / widget)

3-35 Profit = Revenue – Cost \$25,000 = (\$20.00/unit)(x) - [(\$21.00/unit)(.2 hours/unit)(x) + (\$4.00/unit)(x) + (1.2)(\$21.00/unit)(.2 hours/unit)(x) + (\$1.20/unit)(x)]

\$25,000 = 5.56x; x = 4,497 units

3-36 K = 460 hours; s = 0.92 (91% learning curve); n = (log 0.92)/(log 2) = -0.120 $C_{30} = T_{30}/30; \quad T_{30} = 460 \sum_{u=1}^{30} u^{-0.120} = 10,419.63 \text{ hrs;}$ $C_{30} = 10,419.63 \text{ / } 30 = 347.3211$

Select (d)

3-37
$$-1,500 + 800 + (0.07 - 0.05)(4.00)(10)x = 0$$

 $-700 + 0.80x = 0$

$$x = 700/0.80 = 875 \text{ miles/year}$$

Select (a)

3-38 $AC_{current} = \$4,000$

Proposed: N = 13 years, SV = 11% of first cost

4,000 = I(A/P,12%,13) - (0.11)I(A/F,12%,13)

4,000 = I(0.1557) - (0.003927)I

4,000 = I(0.1517)

I = \$26,358

Select (c)

3-39 Let X = average time spent supervising the average employee. Then the time spent supervising employee A = 2X and the time spent supervising employee B = 0.5X. The total time units spent by the supervisor is then 2X + 0.5X + (8)X = 10.5X. The monthly cost of the supervisor is \$3,800 and can be allocated among the employees in the following manner:

3,800/10.5X = 361.90 / Xtime units.

Employee A (when compared to employee B) costs (2X - 0.5X)(\$361.90/X) = \$542.85 more for the same units of production. If employee B is compensated accordingly, the monthly salary for employee B should be \$3,000 + \$542.85 = \$3,542.85.

Select (a)

3-40 Type X filter: cost = \$5, changed every 7,000 miles along with 5 quarts oil between each oil change 1 quart of oil must be added after each 1,000 miles

Type Y filter: cost = ?, changed every 5,000 miles along with 5 quarts of oil no additional oil between filter changes

$$oil = $1.08 / quart$$

Common multiple = 35,000 miles

For filter
$$X = 5$$
 oil changes: $5(\$5 + 5(\$1.08) + 6(\$1.08)) = (5)\$16.88 = \$84.40$
For filter $Y = 7$ oil changes: $7C_Y + 7(5)(\$1.08) = 7X + \37.8

$$$84.40 = 7C_Y + $37.8$$

 $$46.60 = 7C_Y$

$$C_Y = $6.66$$

Select (d)

Engineering Economy 17th Edition Sullivan Solutions Manual

Full Download: https://alibabadownload.com/product/engineering-economy-17th-edition-sullivan-solutions-manual/

3-41
$$C_{2008}$$
 (new design) = $\$900,000 \left(\frac{200}{150}\right)^{0.92} + \$1,125,000 \left(\frac{450}{200}\right)^{0.87} + \$750,000 \left(\frac{175}{100}\right)^{0.79} = \$4,617,660$

$$C_{2018} = \$4,617,660(1.12)^{10} = \$14,341,751$$

Select (c)