CHAPTER 2 VOLTAGE, CURRENT, AND RESISTANCE

BASIC PROBLEMS

SECTION 2-2 Electrical Charge

- 1. $Q = \text{(charge per electron)(number of electrons)} = (1.6 \times 10^{-19} \text{ C/e})(50 \times 10^{31} \text{ e}) = 80 \times 10^{12} \text{ C}$
- 2. $(6.25 \times 10^{18} \text{ e/C})(80 \times 10^{-6} \text{ C}) = 5 \times 10^{14} \text{ e}$
- 3. The magnitude of the charge on a proton (p) is equal to the magnitude of the charge on the electron (e). Therefore, $(1.6 \times 10^{-19} \text{ C/p})(29 \text{ p}) = 4.64 \times 10^{-18} \text{ C}$
- 4. $(1.6 \times 10^{-19} \text{ C/p})(17 \text{ p}) = 2.72 \times 10^{-18} \text{ C}$

SECTION 2-3 Voltage

5. (a)
$$V = \frac{W}{Q} = \frac{10 \text{ J}}{1 \text{ C}} = 10 \text{ V}$$
 (b) $V = \frac{W}{Q} = \frac{5 \text{ J}}{2 \text{ C}} = 2.5 \text{ V}$ (c) $V = \frac{W}{Q} = \frac{100 \text{ J}}{25 \text{ C}} = 4 \text{ V}$

6.
$$V = \frac{W}{O} = \frac{500 \text{ J}}{100 \text{ C}} = 5 \text{ V}$$

7.
$$V = \frac{W}{O} = \frac{800 \text{ J}}{40 \text{ C}} = 20 \text{ V}$$

8.
$$W = VQ = (12 \text{ V})(2.5 \text{ C}) = 30 \text{ J}$$

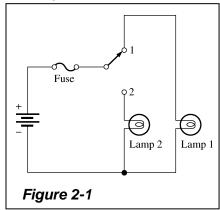
9.
$$V = \frac{W}{Q} = \frac{2.5 \text{ J}}{0.2 \text{ C}} = 12.5 \text{ V}$$

SECTION 2-4 Current

10.
$$I = \frac{Q}{t} = \frac{0.2 \text{ C}}{10 \text{ s}} = 20 \text{ mA}$$

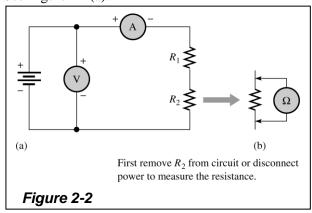
11. (a)
$$I = \frac{Q}{t} = \frac{75 \text{ C}}{1 \text{ s}} = 75 \text{ A}$$
 (b) $I = \frac{Q}{t} = \frac{10 \text{ C}}{0.5 \text{ s}} = 20 \text{ A}$ (c) $I = \frac{Q}{t} = \frac{5 \text{ C}}{2 \text{ s}} = 2.5 \text{ A}$

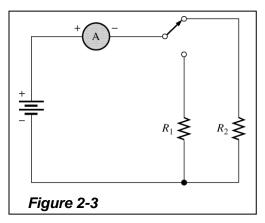
12.
$$I = \frac{Q}{t} = \frac{0.6 \text{ C}}{3 \text{ s}} = \mathbf{0.2 A}$$

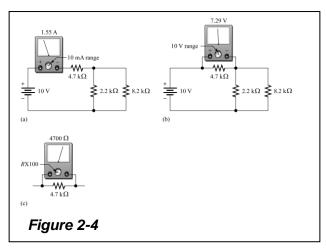

- 13. $I = \frac{Q}{t}$; $t = \frac{Q}{I} = \frac{10 \text{ C}}{5 \text{ A}} = 2 \text{ s}$
- 14. $Q = I \times t = (1.5 \text{ A})(0.1 \text{ s}) = 0.15 \text{ C}$

SECTION 2-5 Resistance

- 15. A: Blue, gray, red, silver: $6800 \Omega \pm 10\%$
 - B: Orange, orange, black, silver: $33 \Omega \pm 10\%$
 - C: Yellow, violet, orange, gold: $47,000 \Omega \pm 5\%$
- 16. A: $R_{\text{min}} = 6800 \ \Omega 0.1(6800 \ \Omega) = 6800 \ \Omega 680 \ \Omega = 6120 \ \Omega$
 - $R_{\text{max}} = 6800 \ \Omega + 680 \ \Omega =$ **7480 \ \Omega**
 - B: $R_{\text{min}} = 33 \ \Omega 0.1(33 \ \Omega) = 33 \ \Omega 3.3 \ \Omega = 29.7 \ \Omega$
 - $R_{\text{max}} = 33 \ \Omega + 3.3 \ \Omega = 36.3 \ \Omega$
 - C: $R_{\text{min}} = 47,000 \ \Omega (0.05)(47,000 \ \Omega) = 47,000 \ \Omega 2350 \ \Omega = 44,650 \ \Omega$ $R_{\text{max}} = 47,000 \ \Omega + 2350 \ \Omega = 49,350 \ \Omega$
- 17. (a) 1st band = \mathbf{red} , 2nd band = \mathbf{violet} , 3rd band = \mathbf{brown} , 4th band = \mathbf{gold}
 - (b) 330 Ω ; orange, orange, brown, (B)
 - 2.2 kΩ: red, red, red (**D**)
 - 39 kΩ: orange, white, orange (A)
 - 56 kΩ: green, blue, orange (L)
 - 100 kΩ: brown, black, yellow (F)
- 18. (a) $36.5 \Omega \pm 2\%$
 - (b) $2.74 \text{ k}\Omega \pm 0.25\%$
 - (c) $82.5 \text{ k}\Omega \pm 1\%$
- 19. (a) Brown, black, black, gold: $10 \Omega \pm 5\%$
 - (b) Green, brown, green, silver: $5{,}100{,}000 \Omega \pm 10\% = 5.1 \text{ M}\Omega \pm 10\%$
 - (c) Blue, gray, black, gold: $68 \Omega \pm 5\%$
- 20. (a) $0.47 \Omega \pm 5\%$: yellow, violet, silver, gold
 - (b) 270 k $\Omega \pm 5\%$: red, violet, yellow, gold
 - (c) 5.1 M Ω ± 5%: green, brown, green, gold
- 21. (a) Red, gray, violet, red, brown: $28,700 \Omega \pm 1\% = 28.7 \text{ k}\Omega \pm 1\%$
 - (b) Blue, black, yellow, gold, brown: $60.4 \Omega \pm 1\%$
 - (c) White, orange, brown, brown, brown: $9310 \pm 1\% = 9.31 \text{ k}\Omega \pm 1\%$
- 22. (a) $14.7 \text{ k}\Omega \pm 1\%$: brown, yellow, violet, red, brown
 - (b) 39.2 $\Omega \pm 1\%$: orange, white, red, gold, brown
 - (c) 9.76 k $\Omega \pm 1\%$: white, violet, blue, brown, brown
- 23. (a) $220 = 22 \Omega$
- (b) $472 = 4.7 \text{ k}\Omega$
- (c) $823 = 82 \text{ k}\Omega$
- (d) $3K3 = 3.3 k\Omega$
- (e) $560 = 56 \Omega$
- (f) $10M = 10 M\Omega$
- 24. **500** Ω , equal resistance on each side of the contact.

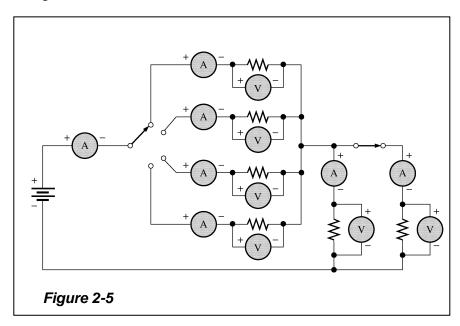

SECTION 2-6 The Electric Circuit


- 25. There is current through Lamp 2.
- 26. See Figure 2-1.


SECTION 2-7 Basic Circuit Measurements

27. See Figure 2-2(a).

- 28. See Figure 2-2(b).
- 29. Position 1: V1 = 0 V, $V2 = V_S$ Position 2: $V1 = V_S$, V2 = 0 V
- 30. See Figure 2-3.
- 31. On the 600 V DC scale: **250 V**
- 32. $R = (10)(10 \Omega) = 100 \Omega$
- 33. (a) $2(100 \Omega) = 200 \Omega$
 - (b) $15(10 \text{ M}\Omega) = 150 \text{ M}\Omega$
 - (c) $45(100 \Omega) = 4500 \Omega$
- 34. See Figure 2-4.



ADVANCED PROBLEMS

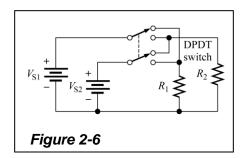
35.
$$I = \frac{Q}{t}$$

 $Q = I \times t = (2 \text{ A})(15 \text{ s}) = 30 \text{ C}$
 $V = \frac{W}{Q} = \frac{1000 \text{ J}}{30 \text{ C}} = 33.3 \text{ V}$

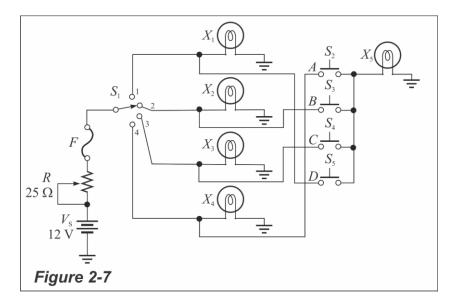
36.
$$I = \frac{Q}{t}$$

 $Q = \text{(number of electrons) / (number of electrons/coulomb)}$
 $Q = \frac{574 \times 10^{15} \text{ e}}{6.25 \times 10^{18} \text{e/C}} = 9.184 \times 10^{-2} \text{ C}$ $I = \frac{Q}{t} = \frac{9.184 \times 10^{-2} \text{ C}}{250 \times 10^{-3} \text{ s}} = \mathbf{0.367 A}$

- 37. Total wire length = 100 ft
 Resistance per 1000 ft = $(1000 \text{ ft})(6 \Omega/100 \text{ ft}) = 60 \Omega$ Smallest wire size is **AWG 27** which has 51.47 $\Omega/1000 \text{ ft}$
- 38. (a) $4R7J = 4.7 \Omega \pm 5\%$
 - (b) $560KF = 560 k\Omega \pm 1\%$
 - (c) $1M5G = 1.5 M\Omega \pm 2\%$
- 39. The circuit in (b) can have both lamps on at the same time.
- 40. There is always current through R_5 .
- 41. See Figure 2-5.



42. See Figure 2-5.


DCAC Fundamentals A Systems Approach 1st Edition Floyd Solutions Manual

 $Full\ Download:\ http://alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutions-manual/alibabadownload.com/product/dcac-fundamentals-a-systems-approach-1 st-edition-floyd-solutio$

43. See Figure 2-6.

44. See Figure 2-7.

