## Chemistry The Science in Context Volume I and II 3rd Edition Gilbert Test Bank

Full Download: http://alibabadownload.com/product/chemistry-the-science-in-context-volume-i-and-ii-3rd-edition-gilbert-test-ban

# **Chapter 12: The Chemistry of Solids**

### MULTIPLE CHOICE

| 1. | The bonding in solid-state metals can be described as                                                                                                                                                                                                                                                                                                                              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <ul> <li>a. nonexistent.</li> <li>b. a covalent network.</li> <li>c. an electron sea.</li> <li>d. highly directional.</li> <li>e. ionic.</li> </ul>                                                                                                                                                                                                                                |
|    | ANS:CDIF:EasyREF:12.1OBJ:Identify the characteristics of bonding in metals.MSC:Factual                                                                                                                                                                                                                                                                                             |
| 2. | Metal solids are good conductors of electricity because                                                                                                                                                                                                                                                                                                                            |
|    | <ul> <li>a. they are easily ionized.</li> <li>b. their valence electrons are not localized.</li> <li>c. they are easily reduced and oxidized.</li> <li>d. they can be drawn into wires.</li> <li>e. they are ductile.</li> </ul>                                                                                                                                                   |
|    | ANS:BDIF:MediumREF:12.1OBJ:Identify the key characteristics of band theory.MSC:Factual                                                                                                                                                                                                                                                                                             |
| 3. | Band theory of bonding in solids                                                                                                                                                                                                                                                                                                                                                   |
|    | <ul> <li>a. is an extension of molecular orbital theory.</li> <li>b. describes bonds as rubber bands.</li> <li>c. does not apply to any type of solid other than metals.</li> <li>d. explains bond formation in metals, but not their physical properties.</li> <li>e. All of the above are correct.</li> </ul>                                                                    |
|    | ANS:ADIF:MediumREF:12.1OBJ:Identify the key characteristics of band theory.MSC:Factual                                                                                                                                                                                                                                                                                             |
| 4. | Electrical and thermal conductivity in metals                                                                                                                                                                                                                                                                                                                                      |
|    | <ul> <li>a. is explained by a dipolar coupling model.</li> <li>b. is explained by band theory.</li> <li>c. is explained by matrix isolation techniques.</li> <li>d. is explained by temporary ionization.</li> <li>e. is a function of the level of contamination by excess electrons.</li> </ul>                                                                                  |
|    | ANS:BDIF:MediumREF:12.1OBJ:Identify the key characteristics of band theory.MSC:Factual                                                                                                                                                                                                                                                                                             |
| 5. | The molecular orbital description for metal bonding is different from that for diatomic molecules in that                                                                                                                                                                                                                                                                          |
|    | <ul> <li>a. there are no antibonding orbitals in the metal bonding description.</li> <li>b. quantum theory no longer applies as the orbitals are continuous.</li> <li>c. the orbitals are so close in energy that they are referred to as bands.</li> <li>d. the increased number of electrons results in each bond being stronger.</li> <li>e. All the above are true.</li> </ul> |
|    | ANS:CDIF:DifficultREF:12.1OBJ:Identify the key characteristics of band theory.MSC:Factual                                                                                                                                                                                                                                                                                          |
| 6. | Molecular orbital theory can be applied                                                                                                                                                                                                                                                                                                                                            |
|    | <ul> <li>a. only to two adjacent metal atoms.</li> <li>b. only to a few metal atoms that are very close to each other.</li> <li>c. to any number of metal atoms.</li> <li>d. to nonmetals only—not to metals.</li> </ul>                                                                                                                                                           |

| ANS. C       DF. Medium       REF. 12.1         OBJ: Multify the key characteristics of band theory.       MSC. Conceptual         1. Which of the following elements are semiconductors:       C. Si, Ge, Sa         a. C and Si only       Si and Ge only         6. G and S noly       G. Card S noly         0. None of these elements are semiconductors unless a dopant is added.       All of these elements are semiconductors.         ANS. B       DF: Easy       REF: 12.2         OBJ: Identify elements that act as semiconductors in that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | e. to nonmetals and ionic bonds only—not to metals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <form><ul> <li>1. Which of the following elements are semiconductors?</li> <li>C, Si, Ge, Si <ul> <li>a. Call Si only</li> <li>b. Stand Ge only</li> <li>c. Get al Si only</li> <li>c. Get al Si only</li> <li>c. Get al Si only</li> <li>c. All of these elements are semiconductors unless a dopant is addet.</li> <li>c. All of these elements are semiconductors unless in addet.</li> <li>c. All of these elements are semiconductors in the statistical conductors in that</li> <li>M. Si B</li></ul></li></ul></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | ANS:CDIF:MediumREF:12.1OBJ:Identify the key characteristics of band theory.MSC:Conceptual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C, Si, Ge, Sn a. C and Si only b. Sina GC and Si only c. Ge and Sn only c. Ge and Sn only c. And Sn only c. Ge and Sn only c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.  | Which of the following elements are semiconductors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>a. C and Si only</li> <li>b. Si and Ge only</li> <li>c. Ge and Sn only</li> <li>d. None of these elements are semiconductors unless a dopant is added.</li> <li>c. All of these clements are semiconductors.</li> <li>ANS: B</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | C, Si, Ge, Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANS: B       DIF: Easy       REF: 12.2         OB:       Identify elements that act as semiconductors.       MSC: Factual         8. The band structure of semiconductors differs from that of metal conductors in that       a. metal bands are relatively empty while semiconductor bands are nearly full.         b. metal bands are nearly full while semiconductor bands are relatively empty.       c. metal conduction bands are lower in energy than valence bands.         c. metal conduction bands are ligher in energy than valence bands while semiconductor conduction bands are higher in energy than valence bands.       c. metal conduction bands are higher in energy than valence bands.         e. metal conduction bands are tigher in energy than valence bands while semiconductor conduction bands are lower in energy than valence bands.       e. metal conduction bands are ligher in energy than valence bands.         e. metal conductions and sare tigher in energy than valence bands.       e. metal conductors are separated by a small gap.         ANS: E       DIF: Difficult       REF: 12.2         OBJ:       Identify the relationship between valence and conductance bands in semiconductors.         MSC: Factual       Mene silicon is doped with gallium, electrical conduction increases because                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | <ul> <li>a. C and Si only</li> <li>b. Si and Ge only</li> <li>c. Ge and Sn only</li> <li>d. None of these elements are semiconductors unless a dopant is added.</li> <li>e. All of these elements are semiconductors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>8. The band structure of semiconductors differs from that of metal conductors in that</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | ANS:BDIF:EasyREF:12.2OBJ:Identify elements that act as semiconductors.MSC:Factual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>a. metal bands are relatively empty while semiconductor bands are nearly full.</li> <li>b. metal conduction bands are lower in energy than valence bands.</li> <li>a. metal conduction bands are higher in energy than valence bands while semiconductor conduction bands are higher in energy than valence bands.</li> <li>c. metal conduction bands are higher in energy than valence bands while semiconductor conduction bands are lower in energy than valence bands.</li> <li>e. valence bands in metals are either partially empty or overlap with conduction bands while these bands in metals are either partially empty or overlap with conduction bands while these bands in metals are either partially empty or overlap with conduction bands while these bands in semiconductors are separated by a small gap.</li> <li>ANS: E DIF: Difficult REF: 12.2</li> <li>OBJ: Identify the relationship between valence and conductance bands in semiconductors. MSC: Factual</li> <li>9. When silicon is doped with gallium, electrical conduction increases because</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.  | The band structure of semiconductors differs from that of metal conductors in that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ANS: E       DIF: Difficult       REF: 12.2         OBJ: Identify the relationship between valence and conductance bands in semiconductors.         MSC: Factual         9. When silicon is doped with gallium, electrical conduction increases because                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | <ul> <li>a. metal bands are relatively empty while semiconductor bands are nearly full.</li> <li>b. metal bands are nearly full while semiconductor bands are relatively empty.</li> <li>c. metal conduction bands are lower in energy than valence bands while semiconductor conduction bands are higher in energy than valence bands.</li> <li>d. metal conduction bands are higher in energy than valence bands while semiconductor conduction bands are lower in energy than valence bands.</li> <li>e. valence bands in metals are either partially empty or overlap with conduction bands while these bands in semiconductors are separated by a small gap.</li> </ul> |
| <ul> <li>9. When silicon is doped with gallium, electrical conduction increases because</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | ANS:EDIF:DifficultREF:12.2OBJ:Identify the relationship between valence and conductance bands in semiconductors.MSC:Factual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>a. gallium has fewer valence electrons than silicon so holes are created in the valence band of silicon.</li> <li>b. gallium has more valence electrons than silicon so electrons are added to the conduction band of silicon.</li> <li>c. gallium causes electrons to be transferred from the valence band of silicon to the conduction band of silicon.</li> <li>d. gallium causes electrons to be transferred from the conduction band of silicon to the valence band of silicon.</li> <li>e. gallium is a better conductor of electricity than silicon.</li> <li>ANS: A DIF: Medium REF: 12.2<br/>OBJ: Describe how conductivity in semiconductors can be increased MSC: Conceptual</li> <li>10. Which of the following can be used to increase the conductivity of any semimetal? <ol> <li>Adding an element with one additional valence electron</li> <li>Adding an element with one fewer valence electron</li> <li>Lowering the temperature</li> </ol> </li> <li>a. I only <ul> <li>b. II only</li> <li>c. III only</li> <li>d. I and II only</li> <li>b. II only</li> <li>c. III only</li> <li>c. III only</li> <li>d. I and H only</li> <li>b. II only</li> <li>c. III only</li> <li>c. III only</li> <li>d. I and H only</li> <li>e. I, H and III.</li> <li>c. III only</li> <li>c. III only</li> <li>d. I and H only</li> <li>e. I, H and III.</li> </ul> </li> <li>ANS: D DIF: Easy REF: 12.2<br/>OBJ: Identify elements that act as semiconductors. MSC: Factual</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.  | When silicon is doped with gallium, electrical conduction increases because                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>a. Ionly</li> <li>b. II only</li> <li>c. III only</li> <li>d. Set only</li> <li>d. I and II only</li> <li>e. I, II and III.</li> <li>c. III only</li> <li>d. J. and II.</li> <li>d. I and II.</li> <li>d. I and II.</li> <li>d. II only</li> <li>e. I, II and III.</li> <li>c. III only</li> <li>d. I and II.</li> <li>d. II.</li> <li>d. I and II.</li> <li>d. II.</li> <li>d. I and II.</li> <li>d. II.<td></td><td><ul> <li>a. gallium has fewer valence electrons than silicon so holes are created in the valence band of silicon.</li> <li>b. gallium has more valence electrons than silicon so electrons are added to the conduction band of silicon.</li> <li>c. gallium causes electrons to be transferred from the valence band of silicon to the conduction band of silicon.</li> <li>d. gallium causes electrons to be transferred from the conduction band of silicon to the valence band of silicon.</li> <li>e. gallium is a better conductor of electricity than silicon</li> </ul></td></li></ul> |     | <ul> <li>a. gallium has fewer valence electrons than silicon so holes are created in the valence band of silicon.</li> <li>b. gallium has more valence electrons than silicon so electrons are added to the conduction band of silicon.</li> <li>c. gallium causes electrons to be transferred from the valence band of silicon to the conduction band of silicon.</li> <li>d. gallium causes electrons to be transferred from the conduction band of silicon to the valence band of silicon.</li> <li>e. gallium is a better conductor of electricity than silicon</li> </ul>                                                                                               |
| <ul> <li>ANS: A DF: Medium REF: 12.2<br/>OBJ: Describe how conductivity in semiconductors can be increased MSC: Conceptual</li> <li>10. Which of the following can be used to increase the conductivity of any semimetal? <ol> <li>Adding an element with one additional valence electron</li> <li>Adding an element with one fewer valence electron</li> <li>II. Adding an element with one fewer valence electron</li> <li>III. Lowering the temperature</li> </ol> </li> <li>a. I only <ol> <li>I only</li> <li>I and II only</li> <li>I entry</li> </ol> </li> <li>ANS: D DIF: Easy REF: 12.2<br/>OBJ: Identify elements that act as semiconductors. MSC: Factual</li> <li>11. When Si is doped with P, it produces a(n)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ANS: A DEC Medium DEC 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>10. Which of the following can be used to increase the conductivity of any semimetal? <ol> <li>Adding an element with one additional valence electron</li> <li>Adding an element with one fewer valence electron</li> <li>II. Lowering the temperature</li> </ol> </li> <li>a. I only <ol> <li>I only</li> <li>I and II only</li> <li>I and III.</li> <li>I only</li> <li>I and II only</li> <li>I and III.</li> </ol> </li> <li>11. When Si is doped with P, it produces a(n)type semiconductor. <ul> <li>a. p</li> <li>a. p</li> <li>b. and the conduction of the conductivity of any semimetal?</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | OBJ: Describe how conductivity in semiconductors can be increased MSC: Conceptual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I.       Adding an element with one additional valence electron         II.       Adding an element with one fewer valence electron         II.       Lowering the temperature         a.       I only         b.       II only         c.       III only         c.       III only         e.       I, II and II only         b.       II only         c.       III only         d.       I and II only         b.       II only         c.       III only         d.       I and III.         c.       III only         e.       I, II and III.         c.       III only         ANS: D       DIF: Easy       REF: 12.2         OBJ:       Identify elements that act as semiconductors.       MSC: Factual         11.       When Si is doped with P, it produces a(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10. | Which of the following can be used to increase the conductivity of any semimetal?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a. I only       d. I and II only         b. II only       e. I, II and III.         c. III only       a. I and II only         ANS: D       DIF: Easy       REF: 12.2         OBJ:       Identify elements that act as semiconductors.       MSC: Factual         11.       When Si is doped with P, it produces a(n)type semiconductor.         a. p       d. np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | <ul> <li>I. Adding an element with one additional valence electron</li> <li>II. Adding an element with one fewer valence electron</li> <li>III. Lowering the temperature</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ANS: D       DIF: Easy       REF: 12.2         OBJ: Identify elements that act as semiconductors.       MSC: Factual         11. When Si is doped with P, it produces a(n)type semiconductor.       a. p         d. np       d. np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | <ul> <li>a. I only</li> <li>b. II only</li> <li>c. III only</li> <li>d. I and II only</li> <li>e. I, II and III.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>11. When Si is doped with P, it produces a(n)type semiconductor.</li><li>a. p</li><li>d. np</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | ANS:DDIF:EasyREF:12.2OBJ:Identify elements that act as semiconductors.MSC:Factual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a. p d. np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11. | When Si is doped with P, it produces a(n)type semiconductor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | a. p d. np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|     | b. n e.<br>c. q                                                                                                                                                                                                                                                                                                     | No semiconductor will be produced.                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|     | ANS:BDIF:EasyREF:OBJ:Determine the type of a particular semiconductor                                                                                                                                                                                                                                               | 12.2<br>or. MSC: Applied                                                                |
| 12. | When Ge is doped with Ga, it produces a(n)                                                                                                                                                                                                                                                                          | type semiconductor.                                                                     |
|     | a. p d.<br>b. n e.<br>c. q                                                                                                                                                                                                                                                                                          | np<br>No semiconductor will be produced.                                                |
|     | ANS:ADIF:EasyREF:OBJ:Determine the type of a particular semiconductor                                                                                                                                                                                                                                               | 12.2<br>or. MSC: Applied                                                                |
| 13. | Which element would be used to dope silicon to produc                                                                                                                                                                                                                                                               | e a p-type semiconductor?                                                               |
|     | a.boron (B)d.b.carbon (C)e.c.aluminum (Al)                                                                                                                                                                                                                                                                          | phosphorus (P)<br>germanium (Ge)                                                        |
|     | ANS:CDIF:EasyREF:OBJ:Determine a suitable element for creating a partMSC:Applied                                                                                                                                                                                                                                    | 12.2 icular type of semiconductor.                                                      |
| 14. | Which element would be used to dope germanium to pr                                                                                                                                                                                                                                                                 | oduce an n-type semiconductor?                                                          |
|     | a. Ga d.                                                                                                                                                                                                                                                                                                            | As                                                                                      |
|     | b. Sn e.<br>c. Si                                                                                                                                                                                                                                                                                                   | Cu                                                                                      |
|     | ANS:DDIF:EasyREF:OBJ:Determine a suitable element for creating a partMSC:Applied                                                                                                                                                                                                                                    | 12.2 icular type of semiconductor.                                                      |
| 15. | Light-emitting diodes are semiconductors that emit ligh factor that must be changed to change the wavelength o                                                                                                                                                                                                      | t when a current is passed through them. What is the key f the emitted light in an LED? |
|     | <ul><li>a. the width of the valence band</li><li>b. the width of the conduction band</li><li>c. the width of the band gap</li></ul>                                                                                                                                                                                 | the magnitude of the current<br>the type of semiconductor (p vs. n)                     |
|     | ANS: C DIF: Easy REF:                                                                                                                                                                                                                                                                                               | 12.2                                                                                    |
|     | OBJ: Identify how a semiconductor can be used to ge                                                                                                                                                                                                                                                                 | nerate light. MSC: Factual                                                              |
| 16. | GaAs and AlGaAs <sub>2</sub> are examples of semic                                                                                                                                                                                                                                                                  | onductors.                                                                              |
|     | a.Ingit-emitting diode (LED)d.b.sound-emittinge.c.np                                                                                                                                                                                                                                                                | dual voltage                                                                            |
|     | ANS:ADIF:EasyREF:OBJ:Identify common LED materials.MSC:                                                                                                                                                                                                                                                             | 12.2<br>Factual                                                                         |
| 17. | The two types of closest-packed lattices are                                                                                                                                                                                                                                                                        | -                                                                                       |
|     | <ul> <li>a. cubic closest-packed and face-centered cubic.</li> <li>b. cubic closest-packed and hexagonal closest-packed</li> <li>c. cubic closest-packed and random closest-packed.</li> <li>d. cubic closest-packed and pyramidal closest-packed</li> <li>e. simple cubic and hexagonal closest-packed.</li> </ul> |                                                                                         |
|     | ANS:BDIF:EasyREF:OBJ:Identify the meaning of closest-packed, hexagon                                                                                                                                                                                                                                                | 12.3<br>nal closest-packed, and cubic-closest packed.                                   |

MSC: Factual

- 18. The face-centered cubic structure is also known as \_\_\_\_\_
  - a. cubic closest-packed.
  - b. hexagonal closest-packed.
  - c. square closest-packed.
  - d. spherical closest-packed.

e. none of the above as it is not a closest-packed pattern.

ANS:ADIF:EasyREF:12.3OBJ:Identify the meaning of closest-packed, hexagonal closest-packed, and cubic-closest packed.MSC:Factual

- 19. A cubic closest-packed structure has hexagonally arranged layers of atoms in the series \_\_\_\_\_
  - a. ababab.

d. abacabacaba.

b. abcabcabc.

e. aaaaaa.

c. abcbabcbabcba.

ANS:BDIF:EasyREF:12.3OBJ:Identify the meaning of closest-packed, hexagonal closest-packed, and cubic-closest packed.MSC:Factual

20. At a historic Civil War battleground, a stack of cannonballs looked like the picture below on the far left. Removing the top cannonball resulted in the middle view, and removing the next layer resulted in the view on the right. What sort of packing was used in stacking the cannonballs?







- a. cannonball closest-packed
- b. hexagonal closest-packed
- c. cubic closest-packed

d. random packede. body-centered closest-packed

ANS:CDIF:MediumREF:12.3OBJ:Differentiate between hexagonal and cubic closest-packed structures.MSC:Applied

21. Pure solid metals \_\_\_\_

- a. do not crystallize.
- b. are amorphous.
- c. often crystallize in closest-packed structures.
- d. often crystallize in very complex unit cells.
- e. are like liquids with the nuclei flowing through a sea of electrons.

ANS:CDIF:MediumREF:12.3OBJ:Identify common examples of packing in metallic crystals.MSC:Factual

- 22. Which is *not* true about a crystallographic unit cell?
  - a. It repeats throughout a crystalline structure in three dimensions.
  - b. It fills all the space in the crystalline lattice.
  - c. Its dimensions can be measured with X-rays.
  - d. It always has corners with 90° angles.
  - e. It represents the smallest repeating unit in the crystal.

ANS: D DIF: Easy REF: 12.3

23. In the sodium chloride unit cell, the chloride ions form a cube in which each side is arranged like the following figure. The circles represent the positions of the chloride ions on one square face of the cube. All the other faces are the same. What is the name of this unit cell?

|     | $\bigcirc \bigcirc$                                                                          |                           |                                     |                     |
|-----|----------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|---------------------|
|     |                                                                                              |                           |                                     |                     |
|     | $\bigcirc \circlearrowright$                                                                 |                           |                                     |                     |
|     | <ul><li>a. cubic</li><li>b. chloride-centered cubic</li><li>c. face-centered cubic</li></ul> | d.<br>e.                  | x-face cubic<br>body-centered cubic |                     |
|     | ANS: C DIF: Easy<br>OBJ: Identify common types of unit c                                     | REF:<br>ells. MSC:        | 12.3<br>Factual                     |                     |
| 24. | How many nearest neighbor atoms are the                                                      | here around eacl          | h atom in a simple cubic            | unit cell?          |
|     | a. 4                                                                                         | d.                        | 10                                  |                     |
|     | b. 6<br>c. 8                                                                                 | e.                        | 12                                  |                     |
|     | ANS:BDIF:MediumOBJ:Identify the number of nearest nMSC:Applied                               | n REF:<br>eighbors around | 12.3<br>each atom in a unit cell    |                     |
| 25. | How many nearest neighbor atoms are the                                                      | here around eacl          | h atom in a face-centere            | d cubic unit cell?  |
|     | a. 4                                                                                         | d.                        | 10                                  |                     |
|     | b. 6<br>c. 8                                                                                 | e.                        | 12                                  |                     |
|     | ANS: E DIF: Medium                                                                           | n REF:                    | 12.3                                |                     |
|     | OBJ: Identify the number of nearest n<br>MSC: Applied                                        | eighbors around           | each atom in a unit cell            |                     |
| 26. | How many nearest neighbor atoms are the                                                      | here around eacl          | h atom in a body-centere            | ed cubic unit cell? |
|     | a. 4                                                                                         | d.                        | 10                                  |                     |
|     | b. 6<br>c. 8                                                                                 | e.                        | 12                                  |                     |
|     | ANS: C DIF: Medium                                                                           | n REF:                    | 12.3                                |                     |
|     | OBJ: Identify the number of nearest n<br>MSC: Applied                                        | eighbors around           | each atom in a unit cell            |                     |
| 27. | Polonium crystallizes in a simple cubic                                                      | pattern. How ma           | any polonium atoms are              | in each unit cell?  |
|     | a. 1                                                                                         | d.                        | 4                                   |                     |
|     | c. 3                                                                                         | e.                        | 5                                   |                     |
|     | ANS: A DIF: Medium                                                                           | n REF:                    | 12.3                                |                     |
|     | OBJ: Determine the number of atoms                                                           | in a unit cell.           | MSC:                                | Applied             |

28. Iron crystallizes in a body-centered cubic pattern. How many iron atoms are in each unit cell?

|     | a.       1       d.         b.       2       e.         c.       4                                                                                                                                          | 8<br>9                                                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|     | ANS:BDIF:MediumREF:OBJ:Determine the number of atoms in a unit cell.                                                                                                                                        | 12.3 MSC: Applied                                                       |
| 29. | Copper crystallizes in a face-centered cubic pattern. He                                                                                                                                                    | ow many copper atoms are in each unit cell?                             |
|     | a. 2 d.<br>b. 4 e.<br>c. 8                                                                                                                                                                                  | 12<br>14                                                                |
|     | ANS:BDIF:MediumREF:OBJ:Determine the number of atoms in a unit cell.                                                                                                                                        | 12.3 MSC: Applied                                                       |
| 30. | <ul> <li>Which unit cell contains the most atoms?</li> <li>a. fcc</li> <li>b. bcc</li> <li>c. cubic</li> <li>d. both fcc and bcc</li> <li>e. None of the above, as fcc, bcc, and cubic contain t</li> </ul> | he same number of atoms.                                                |
|     | ANS:ADIF:MediumREF:OBJ:Determine the number of atoms in a unit cell.                                                                                                                                        | 12.3 MSC: Applied                                                       |
| 31. | If a body-centered cubic unit cell has a volume of 1.44 edge?                                                                                                                                               | $7 \times 10^8 \text{ pm}^3$ , what must be the dimension of the cube's |
|     | a. $1.131 \times 10^8 \text{ pm}$ d.         b. $110 \text{ pm}$ e.         c. $1.20 \times 10^4 \text{ pm}$                                                                                                | 525 pm<br>367 pm                                                        |
|     | ANS:DDIF:EasyREF:OBJ:Interconvert volume and edge length of cubic v                                                                                                                                         | 12.3<br>init cells. MSC: Applied                                        |
| 32. | The alpha form of polonium (Po) crystallizes as a simp<br>the atomic radius of polonium?                                                                                                                    | le cubic unit cell with an edge length of 335 pm. What is               |
|     | a.       84 pm       d.         b.       168 pm       e.         c.       335 pm       e.                                                                                                                   | 175 pm<br>808 pm                                                        |
|     | ANS:BDIF:EasyREF:OBJ:Interrelate unit cell type, atomic radius, cell dirMSC:Applied                                                                                                                         | 12.3 nensions, and density.                                             |
| 33. | Aluminum (Al) crystallizes as a face-centered unit cell of aluminum?                                                                                                                                        | with an edge length of 404 pm. What is the atomic radius                |
|     | a.       143 pm       d.         b.       202 pm       e.         c.       286 pm       e.                                                                                                                  | 175 pm<br>808 pm                                                        |
|     | ANS:ADIF:MediumREF:OBJ:Interrelate unit cell type, atomic radius, cell dirMSC:Applied                                                                                                                       | 12.3 nensions, and density.                                             |
| 34. | Iron (Fe) crystallizes as a body-centered unit cell with a iron?                                                                                                                                            | an edge length of 287 pm. What is the atomic radius of                  |
|     | a. 99 pm d.<br>b. 114 pm e.                                                                                                                                                                                 | 143 pm<br>256 pm                                                        |

c. 124 pm

ANS: C DIF: Difficult REF: 12.3 OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied 35. The alpha form of polonium (Po) has a density of 9.196 g/cm<sup>3</sup> and crystallizes in a simple cubic structure. What is the atomic radius of polonium? 119 pm 335 pm a. d. b. 168 pm 419 pm e. c. 266 pm DIF: Difficult REF: 12.3 ANS: B OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied 36. Aluminum (Al) has a density of  $2.70 \text{ g/cm}^3$  and crystallizes in a face-centered cubic structure. What is the unit-cell edge length?  $2.47 \times 10^{-3} \text{ pm}$ d. 321 pm a. 40.0 pm 255 pm b. e. 405 pm c. ANS: C DIF: Difficult REF: 12.3 OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied 37. Gold (Au) has a face-centered cubic structure with a unit cell edge length of 407.8 pm. What is the calculated value of the density of gold based on this information? 15.78 g/cm<sup>3</sup> 4.82 g/cm<sup>3</sup> a. d. b. 19.28 g/cm<sup>3</sup>  $11.6 \text{ g/cm}^3$ e. c. 9.64 g/cm<sup>3</sup> ANS: B DIF: Medium REF: 12.3 OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied 38. Iron (Fe) has a density of  $7.874 \text{ g/cm}^3$  and crystallizes in a body-centered cubic structure. What is the atomic radius of iron? a. 99 pm d. 143 pm 255 pm b. 114 pm e. c. 124 pm ANS: C DIF: Difficult REF: 12.3 OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied 39. If a face-centered cubic unit cell has a volume of  $1.447 \times 10^8$  pm<sup>3</sup> and the ions at the corners touch the ion on the face, what must be the ion's radius? 125 pm a. 186 pm d. 388 pm 1050 pm b. e. c. 4243 pm DIF: Difficult REF: 12.3 ANS: A OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied

40. Gold has a face-centered cubic structure with a unit cell edge length of 407.8 pm. What is the density of each individual gold atom?

|     | a.<br>b.<br>c.                   | 21<br>26<br>13                       | .44 g/cm <sup>3</sup><br>.20 g/cm <sup>3</sup><br>.1 g/cm <sup>3</sup>                                     |                                                   |                                                            | d.<br>e.            | 6.55 g/cm <sup>3</sup><br>19.28 g/cm <sup>3</sup> |            |                                |
|-----|----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|---------------------|---------------------------------------------------|------------|--------------------------------|
|     | AN<br>OB<br>MS                   | S:<br>J:<br>C:                       | B<br>Interrelate uni<br>Applied                                                                            | DIF:<br>t cell type                               | Difficult<br>e, atomic radius,                             | REF:<br>cell dim    | 12.3<br>ensions, and den                          | isity.     |                                |
| 41. | Wh                               | ich                                  | of the followin                                                                                            | g unit ce                                         | ls has the lowest                                          | t packing           | g efficiency?                                     |            |                                |
|     | a.<br>b.<br>c.<br>d.<br>e.       | sin<br>fac<br>boo<br>boo<br>Sir      | nple cubic<br>e-centered cub<br>dy-centered cul<br>th face-centered<br>nple, face-cent                     | ic<br>bic<br>d and boo<br>ered, and               | ly-centered cubic<br>body-centered c                       | c<br>subic all      | have the same pa                                  | acking e   | fficiency.                     |
|     | AN<br>OB                         | S:<br>J:                             | A<br>Compare pack                                                                                          | DIF:<br>ing effic                                 | Medium<br>iencies of comm                                  | REF:<br>on unit c   | 12.3<br>cells.                                    | MSC:       | Conceptual                     |
| 42. | Wh<br>a.<br>b.<br>c.<br>d.<br>e. | ich<br>sin<br>fac<br>bo<br>bo<br>Sir | of the followin<br>nple cubic<br>ce-centered cub<br>dy-centered cul<br>th face-centered<br>nple, face-cent | g unit cel<br>ic<br>bic<br>d and boo<br>ered, and | lls has the highes<br>ly-centered cubic<br>body-centered c | e<br>cubic all      | g efficiency?<br>have the same pa                 | acking e   | fficiency.                     |
|     | AN<br>OB                         | S:<br>J:                             | B<br>Compare pack                                                                                          | DIF:                                              | Medium<br>iencies of comm                                  | REF:<br>on unit c   | 12.3<br>cells.                                    | MSC:       | Conceptual                     |
| 43. | Wh<br>I.<br>II.<br>III.          | ich                                  | of the followin<br>The elements<br>The proportio<br>The type of h                                          | g can be<br>used<br>ons used<br>ole each          | varied to change<br>element occupie                        | the phys            | sical properties o                                | of an allo | oy?                            |
|     | a.<br>b.<br>c.                   | I o<br>II o<br>III                   | nly<br>only<br>only                                                                                        |                                                   |                                                            | d.<br>e.            | I and II only<br>I, II, and III                   |            |                                |
|     | AN<br>OB                         | S:<br>J:                             | D<br>Identify how t                                                                                        | DIF:<br>he prope                                  | Easy<br>rties of alloys car                                | REF:<br>n be mar    | 12.3<br>nipulated.                                | MSC:       | Conceptual                     |
| 44. | Wh                               | ich                                  | of the followin                                                                                            | g refers t                                        | o an alloy in whi                                          | ich the c           | omposition of the                                 | e elemer   | nts is constant?               |
|     | a.<br>b.<br>c.                   | int<br>int<br>sto                    | ermetallic<br>erstitial<br>ichiometric                                                                     |                                                   |                                                            | d.<br>e.            | substitutional<br>homogeneous                     |            |                                |
|     | AN<br>OB<br>MS                   | S:<br>J:<br>C:                       | A<br>Identify a subs<br>Conceptual                                                                         | DIF:<br>stitutiona                                | Easy<br>l alloy, interstitia                               | REF:<br>al alloy, o | 12.3<br>or intermetallic c                        | compour    | ıd.                            |
| 45. | Wh<br>radi                       | ich<br>ii?                           | of the followin                                                                                            | g refers t                                        | o an alloy in whi                                          | ich the co          | omposition is va                                  | riable an  | d the elements have comparable |
|     | a.<br>b.<br>c.                   | int<br>int<br>sto                    | ermetallic<br>erstitial<br>ichiometric                                                                     |                                                   |                                                            | d.<br>e.            | substitutional<br>homogeneous                     |            |                                |
|     | AN<br>OB<br>MS                   | S:<br>J:<br>C:                       | D<br>Identify the m<br>Conceptual                                                                          | DIF:<br>eaning of                                 | Easy<br>a substitutional                                   | REF:<br>alloy, in   | 12.3<br>terstitial alloy, o                       | r interm   | etallic compound.              |

| 46. | 46. Which of the following refers to an alloy in which the composition of the elements is variable and one elem<br>must have a much smaller radius than the other?                                                                                                                                                                                                                 |                  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
|     | a. intermetallicd. substitutionalb. interstitiale. inhomogeneousc. stoichiometric                                                                                                                                                                                                                                                                                                  |                  |  |  |  |  |  |  |
|     | ANS:BDIF:EasyREF:12.3OBJ:Identify the meaning of a substitutional alloy, interstitial alloy, or intermetallic compound.MSC:Conceptual                                                                                                                                                                                                                                              |                  |  |  |  |  |  |  |
| 47. | In a two-component alloy the more abundant metal can be thought of as the solvent while the less abund metal can be thought of as the solute. Which of the following would <i>not</i> change the orientation of atoms solvent's unit cell?                                                                                                                                         | lant<br>s in the |  |  |  |  |  |  |
|     | <ul> <li>I. a solute with the same atomic radius as the solvent</li> <li>II. a solute that was sufficiently small to fit into holes in the solvent's unit cell</li> <li>III. a solvent that was sufficiently small to fit into holes in the solute's unit cell</li> </ul>                                                                                                          |                  |  |  |  |  |  |  |
|     | a. only Id. I or IIb. only IIe. I, II, or IIIc. only III                                                                                                                                                                                                                                                                                                                           |                  |  |  |  |  |  |  |
|     | ANS: DDIF: DifficultREF: 12.4OBJ: Identify key characteristics of metals in substitutional alloys.MSC: Conceptual                                                                                                                                                                                                                                                                  |                  |  |  |  |  |  |  |
| 48. | Bronze that is composed of 10% tin and 90% copper is                                                                                                                                                                                                                                                                                                                               |                  |  |  |  |  |  |  |
|     | <ul> <li>a. a substitutional alloy.</li> <li>b. an interstitial alloy.</li> <li>c. a doped semiconductor.</li> <li>d. a colloidal alloy.</li> <li>e. an intermetallic compound.</li> </ul>                                                                                                                                                                                         |                  |  |  |  |  |  |  |
|     | ANS: ADIF: MediumREF: 12.4OBJ:Identify common substitutional, intermetallic, and interstitial alloys.MSC:Factual                                                                                                                                                                                                                                                                   |                  |  |  |  |  |  |  |
| 49. | In comparing the density of bronze composed of 20% tin to the density of pure copper.                                                                                                                                                                                                                                                                                              |                  |  |  |  |  |  |  |
|     | <ul> <li>a. the density of the bronze is higher.</li> <li>b. the density of the bronze is lower.</li> <li>c. the density of the bronze is the same.</li> <li>d. the density of the bronze depends on whether the tin or the copper occupies holes.</li> <li>e. It cannot be determined as only the 1:1 intermetallic compound of tin and copper has ever been observed.</li> </ul> |                  |  |  |  |  |  |  |
|     | ANS:ADIF:MediumREF:12.4OBJ:Identify common properties associated with alloys.MSC:Conceptual                                                                                                                                                                                                                                                                                        |                  |  |  |  |  |  |  |
| 50. | The higher the carbon content in steel,                                                                                                                                                                                                                                                                                                                                            |                  |  |  |  |  |  |  |
|     | <ul> <li>a. the stronger and more malleable it is.</li> <li>b. the stronger and more brittle it is.</li> <li>c. the weaker and more malleable it is.</li> <li>d. the weaker and more brittle it is.</li> <li>e. Any of these, depending on the formula of the interstitial compound.</li> </ul>                                                                                    |                  |  |  |  |  |  |  |
|     | ANS:BDIF:EasyREF:12.4OBJ:Identify common properties associated with alloys.MSC:Factual                                                                                                                                                                                                                                                                                             |                  |  |  |  |  |  |  |
| 51. | In addition to carbon and iron, stainless steel contains                                                                                                                                                                                                                                                                                                                           |                  |  |  |  |  |  |  |
|     | <ul><li>a. teflon and polyethylene.</li><li>b. gold and silver.</li><li>d. chromium and nickel.</li><li>e. platinum.</li></ul>                                                                                                                                                                                                                                                     |                  |  |  |  |  |  |  |

c. copper and nickel.

|     | ANS:<br>OBJ:<br>MSC:                                                     | D<br>Identify commo<br>Factual                                                                                                                | DIF:<br>on substi                                                              | Easy<br>itutional, interme                                                                                      | REF:<br>etallic, ai                                           | 12.4<br>nd interstitial all                                          | oys.                                |                 |
|-----|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|-----------------|
| 52. | Stainles<br>a. it i<br>b. the<br>c. the<br>d. the<br>e. the              | ss steel is less su<br>s coated with pla<br>e metals other that<br>carbon within the<br>silicon within the<br>intermetallic co                | sceptibl<br>astic.<br>an iron i<br>he alloy<br>ne alloy<br>mpound              | e to rusting than<br>n the alloy are o<br>polymerizes to<br>oxidizes to form<br>d formed is less n              | iron bec<br>xidized 1<br>form a pr<br>n a protec<br>reactive. | ause<br>nore easily, form<br>rotective film.<br>ctive silicate laye  | —<br>ning pro<br>er.                | tective oxides. |
|     | ANS:<br>OBJ:                                                             | B<br>Identify commo                                                                                                                           | DIF:<br>on prope                                                               | Medium<br>erties associated                                                                                     | REF:<br>with allo                                             | 12.4<br>ys.                                                          | MSC:                                | Factual         |
| 53. | Alumin<br>a. lov<br>b. lov<br>c. hig<br>ANS:<br>OBJ:                     | um alloys are m<br>v density.<br>v cost.<br>th luster.<br>A<br>Identify commo                                                                 | ore desi<br>DIF:<br>on prope                                                   | Medium<br>raises associated                                                                                     | in some a<br>d.<br>e.<br>REF:<br>with allo                    | applications beca<br>high warmth to<br>high conductiv<br>12.4<br>ys. | ause of t<br>touch.<br>ity.<br>MSC: | heir relatively |
| 54. | Alumin<br>a. its<br>b. its<br>c. the<br>d. the<br>e. its<br>ANS:<br>OBJ: | um is resistant to<br>positive oxidation<br>low density.<br>formation of a p<br>formation of a p<br>lack of reactivity<br>C<br>Identify commo | o corros<br>on poten<br>protectiv<br>protectiv<br>y toward<br>DIF:<br>on prope | tion because of _<br>ntial.<br>we surface film o<br>we surface film o<br>d oxygen.<br>Easy<br>erties associated | f alumin<br>f alumin<br>REF:<br>with allo                     | um oxide.<br>um nitride.<br>12.4<br>ys.                              | MSC:                                | Factual         |
| 55. | Which<br>I.<br>II.<br>IV.<br>a. I a<br>b. I a<br>c. II a<br>ANS:<br>OBJ: | of the following<br>beryllium<br>carbon<br>phosphorus<br>sulfur<br>nd II<br>nd III<br>and III<br>C<br>Identify commo                          | elemen<br>DIF:<br>n coval                                                      | ts are found as a<br>Easy<br>ent network soli                                                                   | covalen<br>d.<br>e.<br>REF:<br>ds.                            | t network solid?<br>II and IV<br>III and IV<br>12.5                  | MSC:                                | Factual         |
| 56. | Which<br>I.<br>II.<br>III.<br>IV.                                        | two of the follow<br>beryllium<br>carbon<br>phosphorus<br>sulfur                                                                              | ving ele                                                                       | ments are <i>not</i> fo                                                                                         | und as a                                                      | covalent networ                                                      | k solid?                            |                 |
|     | <ul><li>a. I at</li><li>b. I at</li><li>c. I at</li></ul>                | nd III<br>nd II<br>nd IV                                                                                                                      |                                                                                |                                                                                                                 | d.<br>e.                                                      | II and III<br>II and IV                                              |                                     |                 |
|     | ANS:                                                                     | С                                                                                                                                             | DIF:                                                                           | Easy                                                                                                            | REF:                                                          | 12.5                                                                 |                                     |                 |

\_\_\_\_

OBJ: Identify common covalent network solids. MSC: Factual 57. Different structural forms of the elements are called \_ a. polymers. d. isoforms. b. allotropes. e. polymorphs. isotopes. c. ANS: B DIF: Easy REF: 12.5 OBJ: Identify the meaning of allotrope. MSC: Factual 58. The most common allotrope of carbon is \_ coal. d. diamond. a. carbon steel. b. graphite. e. c. soot. DIF: REF: 12.5 ANS: B Easy OBJ: Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. MSC: Factual 59. The hybridization of atomic orbitals in diamond is \_\_\_\_\_ d.  $sp^3$ . none, since it is the element. a. e.  $dsp^3$ . b. *sp*. c.  $sp^2$ . ANS: D DIF: Medium REF: 12.5 OBJ: Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. MSC: Factual 60. The bond order in diamond is \_\_\_\_\_ a. 1. d. 2. b. 1.33. e. 3. c. 1.5. ANS: A DIF: Medium REF: 12.5 OBJ: Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. MSC: Factual 61. How many carbons are bonded to each carbon in graphite? 1 a. d. 4 b. 2 e. some have 2 and some have 3 c. 3 ANS: C DIF: Easy REF: 12.5 Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. OBJ: MSC: Factual 62. Which of these is the best conductor of electricity? diamond a. d. glass graphite fullerene b. e. c. water REF: 12.5 ANS: B DIF: Easy Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. OBJ: MSC: Conceptual 63. The sheet structure of carbon is diamond. d. industrial diamond. a. b. graphite. rolled carbon steel. e.

- C. fullerene.
- REF: 12.5 ANS: B DIF: Medium

Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. OBJ: MSC: Factual

- 64. Researchers at the University of Texas at Austin prepared a *linear* allotrope of carbon in 1998. What is the hybridization of its atomic orbitals?
  - a. sp
  - $sp^2$ b.
  - $sp^3$ c.
  - $dsp^3$ d.
  - Cannot be determined from the information provided. e.

DIF: Difficult ANS: A REF: 12.5 Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. OBJ: MSC: Conceptual

- 65. Would you expect the *linear* allotrope of carbon to conduct electricity? (Fragments of it were first prepared and characterized in 1998.)
  - No, the linear carbon chains would have no free electrons for carrying electricity. a.
  - Yes, this allotrope would be ionic and would therefore conduct electricity. b.
  - c. No, linear carbon chains would easily break under any electrical potential difference.
  - d. Yes, electrons can move through the delocalized  $\pi$  network.
  - No, only metals conduct electricity. e

ANS: D DIF: Difficult REF: 12.5

OBJ: Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. MSC: Conceptual

- 66. As an analog of graphite, a material composed of boron and nitrogen (B–N) has been prepared. Why do these elements make a good substitute for the element in graphite?
  - I. They are all elements with electrons in the 2p subshell.
  - The sum of the valence electrons of one boron atom and one nitrogen atom is the same as the II. number of valence electrons on two carbon atoms.
  - III. Boron and nitrogen have suitable 2p orbital overlap.
  - I and II only I only a. d.
  - I, II, and III II only b. e.
  - c. III only

DIF: Difficult REF: 12.5 ANS: E

OBJ: Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. MSC: Conceptual

67. Boron nitride, BN, is solid under standard conditions. Which of the following structures would you expect it to most resemble?

| a. | $S_8$            | d. | carbon dioxide |
|----|------------------|----|----------------|
| b. | white phosphorus | e. | kaolinite      |

- white phosphorus b.
- c. graphite

ANS: C DIF: Difficult REF: 12.5

OBJ: Identify the allotropes of nonmetals along with their structures, properties, and relative abundances. MSC: Conceptual

- 68. An approximately spherical allotrope of carbon containing 60 or 70 atoms is
  - spherohexadecalene and spheroheptadecalene. a.
  - b. spheralene-60 and spheralene-70.

- c. fullerene.
- d. graphitolene.
- e. soccerene.

ANS:CDIF:EasyREF:12.5OBJ:Identify the allotropes of nonmetals along with their structures, properties, and relative abundances.MSC:Factual

69. Which of the following figures best represents a common structure within crystalline sulfur? (A sulfur atom lies at each vertex.)



e. None of these as sulfur is a network covalent solid.

ANS:ADIF:MediumREF:12.5OBJ:Identify the allotropes of nonmetals along with their structures, properties, and relative abundances.MSC:Factual

- 70. Which of the following is true regarding the attractive force that holds sodium chloride in the solid state?
  - I. It is electrostatic.

71.

- II. It is termed ionic bonding.
- III. It depends on the distance between the sodium and chloride.
- IV. It only operates between adjacent sodium and chloride.

| a.<br>b.<br>c. | I a<br>II a<br>I, l                                                                                 | nd II only<br>and III only<br>II, and III only |                  |                         | d.<br>e.     | II and IV only<br>I–IV are all true statements. |  |  |
|----------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-------------------------|--------------|-------------------------------------------------|--|--|
| AN<br>OB       | S:<br>J:                                                                                            | C<br>Identify the mea                          | DIF:<br>aning of | Easy<br>an ionic solid. | REF:<br>MSC: | 12.6<br>Factual                                 |  |  |
| Cor            | Compare the packing efficiency of face-centered cubic gold and face-centered cubic sodium chloride. |                                                |                  |                         |              |                                                 |  |  |

- a. The efficiency of packing in the gold unit cell is higher.
- b. The efficiency of packing in the sodium chloride unit cell is higher.
- c. The efficiencies of packing in the two lattices are the same.
- d. Packing efficiencies cannot be defined for one or both of these.
- e. There is no way to compare without further information.

| ANS: | В             | DIF:      | Difficult     | REF:        | 12.6  |      |            |
|------|---------------|-----------|---------------|-------------|-------|------|------------|
| OBJ: | Compare packi | ng effici | encies of con | nmon unit c | ells. | MSC: | Conceptual |

72. Why does a pure metal *not* crystallize in a fluorite or antifluorite unit cell?

- a. They can and do.
- b. These unit cells require two types of atoms or ions with differing radii.
- c. Pure metals do not crystallize; they are amorphous.
- d. The atoms in pure metals move about in a sea of electrons.
- e. The radius of the metal is too large.

ANS:BDIF:DifficultREF:12.6OBJ:Compare unit cells for ionic solids and metals.MSC:Conceptual

73. In the solid-state structure of sodium chloride, the closest distance between the centers of ions is observed

- a. between adjacent sodium ions on the edge of the unit cell.
- b. between adjacent chloride ions on the edge of the unit cell.
- c. between adjacent sodium ions on the face and one corner of the unit cell.
- d. between adjacent chloride ions on the face and one corner of the unit cell.
- e. between all adjacent sodium and chloride ions.

ANS:EDIF:EasyREF:12.6OBJ:Identify and compare various structures for ionic compounds.MSC:Factual

74. The face-centered cubic unit cell has \_\_\_\_\_\_ tetrahedral holes.

- a. 0 d. 8 b. 1 e. 12
- c. 4

ANS: D

ANS: B

DIF: Easy REF: 12.6

OBJ: Identify the number and arrangement of octahedral, tetrahedral, and cubic holes in a unit cell. MSC: Factual

75. A face-centered cubic unit cell has a(n) \_\_\_\_\_ in its center.

- a. tetrahedral hole d. square planar hole
- b. octahedral hole e. cubic hole
- c. atom

DIF: Medium REF: 12.6

OBJ: Identify the number and arrangement of octahedral, tetrahedral, and cubic holes in a unit cell. MSC: Factual

76. A face-centered cubic unit cell contains \_\_\_\_\_\_ octahedral holes.

| a. 1 |              |          |           | d.             | 13    |
|------|--------------|----------|-----------|----------------|-------|
| b. 4 |              |          |           | e.             | 13    |
| c. 8 |              |          |           |                |       |
| ANS: | В            | DIF:     | Easy      | REF:           | 12.6  |
| ODI: | Identify the | numberon | dorrongam | ant of octobed | rol t |

OBJ: Identify the number and arrangement of octahedral, tetrahedral, and cubic holes in a unit cell. MSC: Factual

### 77. A tetrahedral hole in a crystal lattice is defined as \_\_\_\_\_

- a. one-half of an octahedral hole.
- b. the space between any number of atoms having tetrahedral edges.
- c. the space between a cage of  $sp^3$  hybridized atoms such as in diamond.
- d. the space between a cluster of four adjacent atoms arranged in a tetrahedron.
- e. a large hole having four flat sides arranged in a tetrahedral shape.

ANS: D DIF: Difficult REF: 12.6

OBJ: Identify the number and arrangement of octahedral, tetrahedral, and cubic holes in a unit cell. MSC: Factual

- 78. How many tennis balls will fit within the interstitial holes between a truckload of basketballs perfectly placed in a closest-packed arrangement? Assume that the tennis balls have a radius that is 20% that of a basketball.
  - equal number of tennis balls and basketballs a.
  - b. twice as many tennis balls as basketballs
  - c. three times as many tennis balls as basketballs
  - d. four times as many tennis balls as basketballs
  - five times as many tennis balls as basketballs e.

#### ANS: B DIF: Difficult REF: 12.6

OBJ: Identify the number and arrangement of octahedral, tetrahedral, and cubic holes in a unit cell. MSC: Applied

### 79. Which of the following contribute to the arrangement of ions in the unit cells of an ionic solid?

- I. The empirical formula
- II. The relative radii of the ions
- The shape of polyatomic ions III.
- I and II only a. d. I only II and III only e. I, II, and III b. I and III only c.

| ANS: | E                | DIF:    | Medium         | REF:          | 12.6         |      |            |
|------|------------------|---------|----------------|---------------|--------------|------|------------|
| OBJ: | Identify and con | mpare v | arious structu | ares for ioni | c compounds. | MSC: | Conceptual |

80. In the cubic closest-packed structure of sodium chloride, what ions are touching or nearly touching?

- I. Sodium ions and sodium ions
- II. Chloride ions and chloride ions
- III. Sodium ions and chloride ions
- a. I only d. II and III only I and III only e.
- b. II only
- c. III only

ANS: D

### DIF: Medium REF: 12.6

#### OBJ: Identify and compare various structures for ionic compounds. MSC: Factual

- 81. A rock salt structure has smaller ions in \_\_\_\_\_
  - a. cubic holes.
  - b. tetrahedral holes.
  - c. hexagonal holes.
  - d. octahedral holes.
  - the usual atomic positions in the unit cell, i.e., not in holes. e.

| ANS: | D               | DIF:    | Medium            | REF:     | 12.6         |      |         |
|------|-----------------|---------|-------------------|----------|--------------|------|---------|
| OBJ: | Identify and co | mpare v | arious structures | for ioni | c compounds. | MSC: | Factual |

### 82. In the unit cell of sphalerite, \_\_\_\_\_

- all of the octahedral holes are filled with cations. a.
- b. half of the octahedral holes are filled with cations.
- c. all of the tetrahedral holes are filled with cations.
- d. half of the tetrahedral holes are filled with cations.
- e. cations occupy standard atomic positions in the unit cell, i.e., not the holes.

ANS: D DIF: Easy REF: 12.6 OBJ: Identify and compare various structures for ionic compounds. MSC: Factual

83. If half of the tetrahedral holes in a face-centered cubic unit cell are filled, what must be the stoichiometry of the ionic compound, written as nonhole sites : hole sites in lowest terms?

|     | a.<br>b.<br>c.             | 2:1<br>1:1<br>1:2                                                                                                |                                                                                                                                    | d.<br>e.                                             | 4:1<br>2:3                                                                         |                                                        |
|-----|----------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|
|     | AN<br>OB                   | S: B<br>: Identify and cor                                                                                       | DIF: Medium<br>npare various structure                                                                                             | REF:<br>s for ioni                                   | 12.6<br>c compounds.                                                               | MSC: Applied                                           |
| 84. | In f                       | uorite,                                                                                                          |                                                                                                                                    |                                                      |                                                                                    |                                                        |
|     | a.<br>b.<br>c.<br>d.<br>e. | cations are smaller<br>anions are smaller t<br>cations are smaller<br>anions are smaller t<br>anions and cations | than the anions, and the<br>han the cations, and the<br>than the anions, and the<br>han the cations, and the<br>are the same size. | ere are tw<br>ere are tw<br>ere are tw<br>ere are tw | yo cations for eve<br>yo anions for eve<br>yo anions for eve<br>yo cations for eve | ery anion.<br>ery cation.<br>ery cation.<br>ery anion. |
|     | AN<br>OB                   | S: C<br>: Identify and cor                                                                                       | DIF: Difficult<br>npare various structure                                                                                          | REF:<br>s for ioni                                   | 12.6<br>c compounds.                                                               | MSC: Factual                                           |
| 85. | In a                       | ntifluorite structures                                                                                           | ,                                                                                                                                  |                                                      |                                                                                    |                                                        |
|     | a.<br>b.<br>c.<br>d.<br>e. | cations are smaller<br>anions are smaller t<br>cations are smaller<br>anions are smaller t<br>anions and cations | than the anions, and the<br>han the cations, and the<br>than the anions, and the<br>han the cations, and the<br>are the same size. | ere are tw<br>ere are tw<br>ere are tw<br>ere are tw | vo cations for eve<br>vo anions for eve<br>vo anions for eve<br>vo cations for eve | ery anion.<br>ry cation.<br>ry cation.<br>ery anion.   |
|     | AN<br>OB                   | S: A<br>: Identify and cor                                                                                       | DIF: Difficult<br>npare various structure                                                                                          | REF:<br>s for ioni                                   | 12.6<br>c compounds.                                                               | MSC: Factual                                           |
| 86. | If a<br>fcc                | salt has a face-cente<br>positions, then the a                                                                   | red cubic (fcc) unit cel nions fill all the                                                                                        | 1 and a 1:<br>ho                                     | 2 cation:anion st<br>les.                                                          | toichiometry with cations occupying the                |
|     | a.<br>b.<br>c.             | cubic<br>octahedral<br>tetrahedral                                                                               |                                                                                                                                    | d.<br>e.                                             | octahedral and cubic, octahed                                                      | tetrahedral<br>ral, and tetrahedral                    |
|     | AN<br>OB                   | S: C<br>: Identify and cor                                                                                       | DIF: Difficult<br>npare various structure                                                                                          | REF:<br>s for ioni                                   | 12.6<br>c compounds.                                                               | MSC: Conceptual                                        |
| 87. | A s                        | It with the formula                                                                                              | AB has a ratio of its io                                                                                                           | ns' radii A                                          | A/B = 0.28. Which                                                                  | ch structure is it likely to adopt?                    |
|     | a.<br>b.<br>c.<br>d.<br>e. | rock salt<br>sphalerite<br>fluorite<br>cubic<br>There is insufficien                                             | t data to determine the                                                                                                            | structure                                            |                                                                                    |                                                        |
|     | AN<br>OB                   | S: B<br>: Identify and cor                                                                                       | DIF: Easy<br>npare various structure                                                                                               | REF:<br>s for ioni                                   | 12.6<br>c compounds.                                                               | MSC: Conceptual                                        |
| 88. | Wh<br>abo                  | at is the likely unit c<br>at 25% or less?                                                                       | ell for ionic compound                                                                                                             | s of 1:1 s                                           | toichiometry in v                                                                  | which the <i>difference</i> in the radii is only       |
|     | a.<br>b.<br>c.             | rock salt<br>sphalerite<br>fluorite                                                                              |                                                                                                                                    | d.<br>e.                                             | cubic<br>antifluorite                                                              |                                                        |
|     | AN<br>OB                   | S: A<br>: Identify and cor                                                                                       | DIF: Medium<br>npare various structure                                                                                             | REF:<br>s for ioni                                   | 12.6<br>c compounds.                                                               | MSC: Applied                                           |
| 89. | The                        | center of a cubic ho                                                                                             | le is found                                                                                                                        | _                                                    |                                                                                    |                                                        |
|     | а                          | at the center of a si                                                                                            | nple cubic lattice                                                                                                                 |                                                      |                                                                                    |                                                        |

a. at the center of a simple cubic fattice.b. on the edges of a simple cubic lattice.

|     | <ul><li>c. on the faces of a body-centered cubic lattice.</li><li>d. at the center of a face-centered cubic lattice.</li><li>e. at eight sites within a face-centered cubic lattice</li></ul>                 | ce.            |                                                                    |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|--|--|--|--|
|     | ANS: A DIF: Easy R<br>OBJ: Identify and compare various structures for                                                                                                                                        | EF:<br>r ionic | 12.6<br>compounds. MSC: Factual                                    |  |  |  |  |
| 90. | A ceramic is a chemically resistant and heat-resista                                                                                                                                                          | ant soli       | id produced by heating                                             |  |  |  |  |
|     | <ul> <li>a. compounds containing cerium.</li> <li>b. clays.</li> <li>c. sand and water.</li> <li>d. any compound containing aluminum and sulfu</li> <li>e. mixtures containing yttrium and barium.</li> </ul> | ır.            |                                                                    |  |  |  |  |
|     | ANS:BDIF:EasyROBJ:Identify the meaning of a ceramic.M                                                                                                                                                         | EF:<br>1SC:    | 12.7<br>Factual                                                    |  |  |  |  |
| 91. | Firing of a kaolinite clay object to make a ceramic                                                                                                                                                           | results        | s in                                                               |  |  |  |  |
|     | <ul><li>a. loss of water but not SiO<sub>2</sub>.</li><li>b. loss of SiO<sub>2</sub> but not water.</li></ul>                                                                                                 | c.<br>d.       | loss of water and $SiO_2$ .<br>loss of neither water nor $SiO_2$ . |  |  |  |  |
|     | ANS:CDIF:MediumROBJ:Identify the meaning of a ceramic.M                                                                                                                                                       | EF:<br>1SC:    | 12.7<br>Factual                                                    |  |  |  |  |
| 92. | Silicon dioxide exists as                                                                                                                                                                                     |                |                                                                    |  |  |  |  |
|     | <ul><li>a. a covalent network solid.</li><li>b. a metallic solid.</li><li>c. a semimetallic solid.</li></ul>                                                                                                  | d.<br>e.       | a molecular solid.<br>all the above                                |  |  |  |  |
|     | ANS: A DIF: Medium R<br>OBJ: Identify common polymorphs of silicon die                                                                                                                                        | EF:<br>oxide.  | 12.7<br>MSC: Factual                                               |  |  |  |  |
| 93. | Substances like silicon dioxide that can have the sa properties are termed                                                                                                                                    | ime en         | npirical formula but different crystal structures and              |  |  |  |  |
|     | <ul><li>a. allotropes.</li><li>b. allopmorphs.</li><li>c. isomorphs.</li></ul>                                                                                                                                | d.<br>e.       | isotopes.<br>polymorphs.                                           |  |  |  |  |
|     | ANS:CDIF:MediumROBJ:Identify the meaning of polymorph.M                                                                                                                                                       | EF:<br>1SC:    | 12.7<br>Factual                                                    |  |  |  |  |
| 94. | Glass is a term used to describe any solid that is                                                                                                                                                            |                |                                                                    |  |  |  |  |
|     | <ul><li>a. crystalline.</li><li>b. amorphous.</li><li>c. a liquid crystal.</li></ul>                                                                                                                          | d.<br>e.       | a crystalline liquid.<br>transparent.                              |  |  |  |  |
|     | ANS:BDIF:EasyROBJ:Identify common polymorphs of silicon dia                                                                                                                                                   | EF:<br>oxide.  | 12.7<br>MSC: Factual                                               |  |  |  |  |
| 95. | The thermal and electrical insulating qualities of ceramics can be explained by                                                                                                                               |                |                                                                    |  |  |  |  |
|     | <ul> <li>a. significant band gaps.</li> <li>b. small band gaps.</li> <li>c. Cooper pairs.</li> <li>d. the Meissner effect.</li> <li>e. the low conductivity of positively charged hole.</li> </ul>            | les.           |                                                                    |  |  |  |  |
|     | ANS: A DIF: Medium R<br>OBJ: Identify key characteristics of the band stru                                                                                                                                    | EF:<br>acture  | 12.7<br>of insulators. MSC: Factual                                |  |  |  |  |

| 96. | Ceramic insulators |  |
|-----|--------------------|--|
| 90. |                    |  |

- a. do not have a band structure.
- b. have a band structure, but no electrons are in these bands.
- c. have two half-filled bands neither of which is capable of conducting electricity.
- d. have a full band that is well separated in energy from an empty band.
- do not exist as all ceramics are good thermal and electrical conductors e.

ANS: D DIF: Difficult REF: 12.7 OBJ: Identify key characteristics of the band structure of insulators. MSC: Factual 97. Superconductivity involves the formation of \_\_\_\_\_ a. electron tunnels. d. electron yokes. b. phase-matched electron waves. e. Meissner couples. c. Cooper pairs. ANS: C DIF: Easy REF: 12.7 OBJ: Identify the meaning of a Cooper pair. MSC: Factual 98. Why are ceramic superconductors not currently practical for widespread transmission of electricity? I. They are relatively expensive in comparison to metals. They require extremely cold temperatures. II. III. They are brittle and lack ductility. I only d. I and II only a. II only I. II. and III b. e. III only c. ANS: E DIF: Medium REF: 12.7 OBJ: Identify the key characteristics of superconductivity. MSC: Factual 99. What similarities are there in the motion of electrons about an atom and electrons being conducted in a superconducting ceramic? The electrons move in circular orbits. a. b. Two electrons move in opposite directions but with the same path. c. The electrons move without loss of kinetic energy. The electrons move in all directions at once like light. d. e. The electrons move in Cooper pairs. ANS: C DIF: Difficult REF: 12.7 OBJ: Identify the key characteristics of superconductivity. MSC: Conceptual 100. The Meissner effect is \_\_\_\_\_ the repulsion of a superconductor by a magnetic field. a. b. the scattering of electrons in ceramics. c. the tunneling of electrons through a solid. the acceleration of electrons in a particle accelerator. d. the superconduction of materials below their critical temperature. e. ANS: A DIF: Medium REF: 12.7 OBJ: Identify the meaning of the Meissner effect. MSC: Factual 101. The property of superconducting ceramics that makes them a potential technology for levitating trains is

- antigravity. a.
- the Meissner effect. b.

- d. resistive heating.
- Cooper pairing of yttrium and barium. e.

Brownian motion. c.

|      | ANS: B I<br>OBJ: Identify the mean                                                                                                                                                                                                            | DIF: Medium<br>ing of the Meissner eff                                                                                                | REF:<br>ect.                | 12.7                                               | MSC:                  | Factual                                                          |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|-----------------------|------------------------------------------------------------------|--|
| 102. | <ul> <li>Yttrium–barium–copper</li> <li>a. photovoltaic properti</li> <li>b. superstitial substituti</li> <li>c. superconductivity at</li> <li>d. liquid crystalline pro</li> <li>e. All of the above.</li> </ul>                             | oxides are ceramics wit<br>es.<br>on sites.<br>moderately low temper<br>perties.                                                      | h                           |                                                    |                       |                                                                  |  |
|      | ANS: C I<br>OBJ: Identify common                                                                                                                                                                                                              | DIF: Easy superconducting mater                                                                                                       | REF:<br>ials.               | 12.7                                               | MSC:                  | Factual                                                          |  |
| 103. | Just as visible light is diff<br>range has th<br>lattice.                                                                                                                                                                                     | fracted by the finely spa<br>e appropriate waveleng                                                                                   | aced gro<br>th to be        | oves on a CD, ele<br>diffracted by ator            | ectromans and         | gnetic radiation in the<br>electron density in a crystalline     |  |
|      | <ul><li>a. UV-A</li><li>b. UV-B</li><li>c. X-ray</li></ul>                                                                                                                                                                                    |                                                                                                                                       | d.<br>e.                    | gamma-ray<br>microwave                             |                       |                                                                  |  |
|      | ANS: C I<br>OBJ: Identify the mean                                                                                                                                                                                                            | DIF: Easy<br>ing of X-ray diffraction                                                                                                 | REF:<br>n.                  | 12.8                                               | MSC:                  | Factual                                                          |  |
| 104. | a. wavelength of the X-<br>b. the distance between<br>c. the angle of incidence<br>d. the dimension of the<br>e. angle of diffraction of<br>ANS: C I<br>OBJ: Identify the mean<br>MSC: Factual                                                | ray.<br>layers of identical part<br>e of the X-ray beam.<br>unit cell.<br>of the X-ray beam.<br>DIF: Easy<br>ings of the angles of in | icles in<br>REF:<br>cidence | the lattice.<br>12.8<br>, refraction, and d        | iffractio             | <br>Dn.                                                          |  |
| 105. | If an X-ray with a wavele $(n\lambda = 2 d \sin\theta)$ , what is the in this problem.                                                                                                                                                        | ngth of 154 pm is diffr<br>ne distance between lay                                                                                    | acted at<br>ers of th       | an angle $2\theta = 14$ .<br>The crystal that give | .6°, acc<br>e rise to | ording to the Bragg equation<br>this diffraction? Assume $n = 1$ |  |
|      | <ul><li>a. 610.9 pm</li><li>b. 305.5 pm</li><li>c. 606.0 pm</li></ul>                                                                                                                                                                         |                                                                                                                                       | d.<br>e.                    | 1212 pm<br>198.1 pm                                |                       |                                                                  |  |
|      | ANS: C I<br>OBJ: Determine the an<br>MSC: Applied                                                                                                                                                                                             | DIF: Medium<br>gle of incidence, wavel                                                                                                | REF:<br>ength, s            | 12.8<br>pacing d, or order                         | n from                | the other three.                                                 |  |
| 106. | In an XRD analysis using a wavelength of 154 pm, a crystalline sample of a layered VO(PO <sub>4</sub> )(H <sub>2</sub> O) structure gave peaks at 24.2°, 36.3°, and 48.4°. What is likely to be the value of the distance between the layers? |                                                                                                                                       |                             |                                                    |                       |                                                                  |  |
|      | <ul><li>a. 731 pm</li><li>b. 367 pm</li><li>c. 103 pm</li></ul>                                                                                                                                                                               |                                                                                                                                       | d.<br>e.                    | 188 pm<br>55.1 pm                                  |                       |                                                                  |  |
|      | ANS: A I<br>OBJ: Determine the an<br>MSC: Applied                                                                                                                                                                                             | DIF: Difficult<br>gle of incidence, wavel                                                                                             | REF:<br>ength, s            | 12.8<br>pacing d, or order                         | n from                | the other three.                                                 |  |

107. The XRD scan of the face-centered cubic (fcc) structure of sodium chloride showed that there was a distance of 562.8 pm between "layers of ions." Given that the fcc unit cell has a volume of  $178.26 \times 10^{-24}$  cm<sup>3</sup>, to which distance does the 562.8 pm correspond?



OBJ: Determine the angle of incidence, wavelength, spacing d, or order n from the other three. MSC: Applied

### SHORT ANSWER

1. According to band theory, when the lower energy \_\_\_\_\_ band overlaps with the higher energy \_\_\_\_\_ band, the material will act as a \_\_\_\_\_ of electricity.

ANS:

valence, conduction, conductor

DIF: Easy REF: 12.1

OBJ: Identify the relationship between valence and conductance bands in metals. MSC: Factual

2. According to band theory, when the lower energy \_\_\_\_\_ band is separated from the higher energy \_\_\_\_\_ band by a small band gap, the material will act as a \_\_\_\_\_ of electricity.

### ANS:

valence, conduction, semiconductor

DIF:EasyREF:12.2OBJ:Identify the relationship between valence and conductance bands in semiconductors.MSC:Factual

3. According to band theory, when the lower energy \_\_\_\_\_ band is separated from the higher energy \_\_\_\_\_ band by a large band gap, the material will act as a \_\_\_\_\_ of electricity.

ANS:

valence, conduction, nonconductor

DIF:EasyREF:12.7OBJ:Identify the relationship between valence and conductance bands in insulators.MSC:Factual

4. In a simple cubic cell there is/are \_\_\_\_\_ atom(s), in a face-centered cubic cell there is/are \_\_\_\_\_ atom(s), and in a body-centered cubic cell there is/are \_\_\_\_\_ atom(s).

ANS: 1, 4, 2

DIF: Easy REF: 12.3 OBJ: Determine the number of atoms in a unit cell. MSC: Factual

5. For an alloy composed of two elements whose composition can be variable, if the radii of the two elements are approximately the same, the alloy is most likely to be a(n) \_\_\_\_\_\_ alloy, while if the radii are significantly different, the alloy is most likely to be a(n) \_\_\_\_\_\_ alloy.

ANS: substitutional, interstitial

DIF:EasyREF:12.4OBJ:Identify the meaning of a substitutional alloy, interstitial alloy, or intermetallic compound.MSC:Factual

6. Graphite and diamond are examples of \_\_\_\_\_\_ solids; sulfur and white phosphorus are examples of \_\_\_\_\_\_ solids; and sodium chloride and zinc sulfide are examples of \_\_\_\_\_\_ solids.

ANS:

network covalent, molecular, ionic

DIF: Easy REF: 12.5 | 12.6 OBJ: Classify a solid as network covalent, molecular, or ionic. MSC: Factual

7. In ionic solids, one ion often occupies holes in the unit cell defined by the other ion. In a simple cubic cell, what are the types of holes that are found and the number of holes of each type?

ANS: type: cubic; number: 1

DIF:EasyREF:12.3 | 12.6OBJ:Identify the number and arrangement of octahedral, tetrahedral, and cubic holes in a unit cell.MSC:Factual

8. In ionic solids, one ion often occupies a hole in the unit cell defined by the other ion. In a face-centered cubic cell, what are the types and numbers of each hole?

ANS: type: tetrahedral; number: 8; type: octahedral; number: 12

DIF: Medium REF: 12.3 | 12.6 OBJ: Identify and compare various structures for ionic compounds. MSC: Factual

9. In ionic solids, one ion often occupies a hole in the unit cell defined by the other ion. In a body-centered cubic cell, what are the types and numbers of each hole?

ANS: type: octahedral; number: 6

DIF:DifficultREF:12.3 | 12.6OBJ:Identify and compare various structures for ionic compounds.MSC:Applied

10. Consider the three unit cells below for ionic solids. In each unit cell, one of the ions is arranged in one of the standard unit cell structures while the other is found between these sites. What are the names of the minerals associated with each of these structures? I \_\_\_\_\_; II \_\_\_\_\_; III \_\_\_\_\_.



n

р

15. The alpha form of polonium (Po) has a density of 9.196 g/cm<sup>3</sup> and crystallizes in a simple cubic structure. What is the atomic radius of polonium in picometers?

ANS: 168 pm

DIF:DifficultREF:12.3OBJ:Interrelate unit cell type, atomic radius, cell dimensions, and density.MSC:Applied

16. If a face-centered cubic unit cell has a volume of  $1.447 \times 10^8$  pm<sup>3</sup> and the ions at the corners touch the ion on the face, what must be the ion's radius in picometers?

ANS: 186 pm

DIF:DifficultREF:12.3OBJ:Interrelate unit cell type, atomic radius, cell dimensions, and density.MSC:Applied

17. Aluminum (Al) crystallizes as a face-centered unit cell with an edge length of 404 pm. What is the atomic radius of aluminum in picometers?

ANS: 143 pm

DIF: Medium REF: 12.3 OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density. MSC: Applied

18. Aluminum (Al) has a density of 2.70 g/cm<sup>3</sup> and crystallizes in a face-centered cubic structure. What is the unit cell edge length in picometers?

ANS: 405 pm

DIF: Difficult REF: 12.3OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density.MSC: Applied

19. Gold (Au) has a face-centered cubic structure with a unit cell edge length of 407.8 pm. What is the calculated value of the density of gold in g/cm<sup>3</sup> based on this information?

ANS: 19.3 g/cm<sup>3</sup>

DIF:MediumREF:12.3OBJ:Interrelate unit cell type, atomic radius, cell dimensions, and density.MSC:Applied

20. Gold has a face-centered cubic structure with a unit cell edge length of 407.8 pm. What is the density *of each individual gold atom* in g/cm<sup>3</sup>?

ANS: 26.2 g/cm<sup>3</sup>

DIF: Difficult REF: 12.3

OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density.

MSC: Applied

## Chemistry The Science in Context Volume I and II 3rd Edition Gilbert Test Bank

Full Download: http://alibabadownload.com/product/chemistry-the-science-in-context-volume-i-and-ii-3rd-edition-gilbert-test-ban

21. If a body-centered cubic unit cell has a volume of  $1.447 \times 10^8$  pm<sup>3</sup>, what must be the dimension of the cube's edge in picometers?

ANS: 525 pm

 DIF:
 Easy
 REF:
 12.3
 OBJ:
 Interconvert volume and edge length of cubic unit cells.

 MSC:
 Applied
 OBJ:
 Interconvert volume and edge length of cubic unit cells.

22. Iron (Fe) crystallizes as a body-centered unit cell with an edge length of 287 pm. What is the atomic radius of iron in picometers?

ANS: 126 pm

DIF: Difficult REF: 12.3

OBJ: Interrelate unit cell type, atomic radius, cell dimensions, and density.

MSC: Applied