INSTRUCTOR'S MANUAL TO ACCOMPANY

CAPITAL INVESTMENT ANALYSIS FOR ENGINEERING AND MANAGEMENT

Third Edition

JOHN R. CANADA
WILLIAM G. SULLIVAN
JOHN A. WHITE
DENNIS J. KULONDA

Upper Saddle River, New Jersey 07458

Executive Editor: *Eric Svendsen*Editorial Assistant: *Andrea Messineo*Executive Managing Editor: Vince O'Brien

Managing Editor: *David A. George*Production Editor: *Daniel Sandin*Manufacturing Buyer: *Lisa McDowell*

© 2005 by Pearson Education, Inc. Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Prentice Hall[™] is a trademark of Pearson Education, Inc.

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-146690-9

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

FOREWORD

This manual consists primarily of solutions to the end-of-chapter problems and exercises. They are the result of the efforts of all four authors and represent our efforts to help students gain closure on the concepts and principles developed in the text. They are organized to follow the chapters of the text.

Following the chapter solutions, are some new additions. First of these is a major section titled <u>Case Teaching Guidelines and Suggestions</u>. This was prepared by Dennis J. Kulonda based on his extensive experience teaching graduate students in Engineering Management. It should be of great educational benefit to instructors (and their students) who wish to use this approach as a means to convey the rich context of capital investment decisions, create a greater sense of realism and motivate understanding of how the pieces of the puzzle fit.

Recommendations for case usage are provided for each of the four sections of the text; however, a detailed segment teaching plan is provided for Part One of the text on Value Creation and Accounting. This especially valuable in that we believe that it helps students develop a solid understanding of the role of the accounting process and its relation to performance measurement and investment analysis. Further it does so with a bare minimum of attention to accounting mechanics and transaction processing. For those who prefer a traditional approach, there are exercises at the end of the chapters.

Cases in subsequent parts of the text provide opportunities to supplement the problem exercises with cases which, as already indicated, enrich the student's understanding of the material. Guidance on interspersing them with chapter exercises is provided.

Finally the last section of this manual contains a glossary of accounting and financial terms which may be duplicated and furnished to the students for general reference or as part of an exercise as outlined in the teaching suggestions.

Your thoughts, comments and suggestions are most welcome.

Bon Voyage!

Dennis J. Kulonda

Editor, Instructor's Manual

Table of Contents

PART ONE – BASIC CONCEPTS: VALUE, COST AND ACCOUNTING	
Chapter 1: Value Creation and Financial Accounting	1
Chapter 2: Cost Measurement and the Cost Accounting System	6
Chapter 3: Relevant Costs and Revenues and Estimating	10
PART TWO – BASIC CAPITAL INVESTMENT ANALYSIS: APPLICATIONS	
Chapter 4: Computations Involving Interest	29
Chapter 5: Equivalent Worth Methods for Computing Alternatives	38
Chapter 6: Rate of Return Methods for Comparing Alternatives	49
Chapter 7: Consideration of Depreciation and Income Taxes	70
Chapter 8: Dealing with Price Changes in Capital Investment Analysis	95
Chapter 9: Replacement Analyses	104
Chapter 10: New Product and Expansion Analysis	126
Chapter 11: Capital Planning and Budgeting	135
PART THREE – CAPITAL INVESTMENT ANALYSES IN AN UNCERTAIN WORLD:	
FORMAL ASSESSMENTS	
Chapter 12: Introduction to Risk and Uncertainty	144
Chapter 13: Sensitivity Analysis	148
Chapter 14: Analytical and Simulation Approaches to Risk Analysis	174
Chapter 15: Decision Criteria and Methods for Risk and Uncertainty	178
Chapter 16: Decision Tree Analysis	195
PART FOUR – SPECIALIZED TOPICS IN CAPITAL INVESTMENT ANALYSIS	
Chapter 17: Capital Investment Decisions as Options	212
Chapter 18: Activity-Based Costing and Management	214
Chapter 19: Multiple Attribute Decision Making and The Analytic Hierarchy Process	224
CASE TEACHING GUIDELINES AND SUGGESTIONS	245
GLOSSARY OF SELECTED TERMS IN ACCOUNTING/FINANCE	258

SOLUTIONS TO CHAPTER 1 PROBLEMS

Value Creation and Financial Accounting

- 1-1 Engineers do not know how to keep books but they must be able to communicate with those who do. Even though the need for debits and credit labeling of transactions is obsolete in today's corporate world, the language and concepts are essential knowledge for any professional.
- 1-2 Must be a cash accounting (rather than accrual) system.

1-3

Cash	<u>Asset</u>
(1) 100,000	20,000 (3)
(4) 80,000	20,000 (5)
	10,000 (5)
	50,000 (7)
(10) 80,000	

<u>Liability & Net Worth</u> Accounts Payable

Accounts Fayable		
(7) 50,000	40,000 (2)	
	30,000 (6)	
	20,000 (10)	
	-,	

Raw Material		
(2) 40,000	30,000 (3)	
(6) 30,000		
(10) 40 000		

Equity Shares	
	100,000 (1)

Plant and Equipment			
	(3)	20,000	2,000 (7)
	(10)	18,000	

_	
Revenues	
VC A CLINCO	

28,000 (9)

Accounts Receivable		
(4) 10,000		

revenues	
(8) 90,000	90,000 (4)

Net Income	
(8) 62,000	90,000 (8)
(9) 28 000	

Expenses	
(5) 30,000	62,000 (8)
(5) 20,000	
(5) 10,000	
(7) 2,000	

Numbers in parentheses are debits and credits corresponding to the first six transactions for items (1) to (6). Items (7) to (10) are required for closing the books as follows:

Retained Earnings

- 7. Show depreciation Charges8. Close Revenue and expense to Net Income
- 9. Close Net Income to Retained Earnings
- 10. Re-total permanent accounts

The resulting income statement and balance sheets are shown below:

Income Statement

Sales Mat'l \$ 30,000 \$ 20,000 Labor Rent& Admin \$10,000 Depreciation \$ 2,000 \$ 90,000

Total Expense \$ 62,000 **Net Income** \$ 28,000

Assets		Liabilities	
Cash	80,000	Accounts Payable	20,000
Accounts Receivable	10,000	Total Liabilities	\$ 20,000
Inventory	40,000		
Net Equip	18,000	Treasury Shares	100,000
		Retained Earnings	28,000
		Total Equity	\$ 128,000
Total Assets \$ 148,000		Total Liabilities & Equity	\$ 148,000

1-4. Initial Balances

Cash	A
100,000	
	L
	E
Inventory	
100,000	
	F
	L
Plant and Equipment	
400,000	
Cost of Goods	

Accounts Payable	
	50,000
Equity	
	550,000
Revenues	

Transactions During the year

Item #	Item	Debit	Credit
1	Labor Cost	Inventory in Process \$100,000	Cash \$100,000
2	Materials	Inventory in Process \$150,000	Cash \$150,000
3	Depreciation	Inventory in Process \$50,000	Plant and Equipment \$50,000
4	Production	Finished Goods Inventory \$300,000	Inventory in Process \$300,000
5	Sales and Product Delivery	Cash \$600,000	Sales Revenue \$600,000
		Cost of Goods \$300,000	Finished Goods Inventory \$300,000
6	Equipment Purchase	Plant & Equipment \$200,000	Cash \$200,000
7	Closing Entries	Net Income \$300,000	Cost of Goods sold \$300,000
		Sales Revenue \$600,000	Net Income \$600,000

T Accounts After Transactions:

Cash

100,000	100,000 (1)
(5) 600,000	150,000 (2)
	200,000 (6)
250,000	

Finished Goods Inventory

100,000	300,000 (5)	
(4) 300,000		
100,000		

Plant and Equipment

riant and Equipment		
	400,000	50,000 (3)
(6)	200,000	
	550,000	

Cost of Goods

(5) 300,000	300,000 (7)	
-------------	-------------	--

Inventory in Process

0	
(1) 100,000	300,000 (4)
(2) 150,000	
(3) 50,000	
0	

Accounts Payable

50,000

Equity

quity		
	550,000	

Net Income and Retained Earnings

(7) 300,000	600,000 (7)
	300,000

Revenue

(7	600,000	600,000 (5)

Long Corporation

Income Statement for Year 1 (Amounts in \$)

Sales	600,000
Cost of goods	300,000
sold	

Long Corporation

Balance Sheet at end of Year 1

(Amounts in \$)

 ASSETS

 Cash
 250,000

 Inventory
 100,000

 Plant & Equipment
 550,000

TOTAL ASSETS 900,000

LIABILITIES

Accounts Payable 50,000

EQUITY

Original Equity 550,000 Retained Equity 300,000

TOTAL LIABILITIES & EQUITY 900,000

Solution Notes to Point out

- 1. This solution assumes that this was the first operating year; hence retained earnings is the same as net income for the first year.
- The company capitalization grew by the amount of retained earnings. We create value when we make profits.
- 3. Good example to point out difference in cash positions, that is
 - Cash Flow from operations is \$350,000 (Revenue of \$600,000 less materials and labor at \$150,000 and \$100,000 respectively).
 - b) Cash Flow from new equipment investment is a negative \$200,000 resulting in a net cash flow of \$350,000 \$200,000 = \$150,000. Look at initial and ending balance sheets to see change in cash position is \$150,000.

1-5

	Assets	Lia	Liabilities		
Cash	\$ 150,000	Current Liabilities	\$ 40,000		
Raw Mat'l	100,000	Debt	450,000		
Finished Goods	50,000	Retd Earnings	610,000		
WIP (in-process ma	at'l) 100,000	Stock	400,000		
Fixed Assets(P&E)	1,100,000				
Total	\$ 1,500,000	Total	\$ 1,500,000		
			• • •		

Net Working Capital = Current Assets - Current Liabilities = (150,000+100,000+50,000+100,000) - 40,000 = \$ 360,000

Current Ratio = CA/CL = 400000 / 40000 = 10.0

Net Income after Tax (NIAT)

1-6

EZ Machine Shop PROFIT and LOSS Statement for 9 Months Ending September 30 (Amounts in \$)

Gross Sales	700,000	
Less: returns	40,000	
Discounts	10,000	
Net Sales	<u> </u>	650,000
Material Expense	210,000*	•
Salaries	120,000	
Rent	80,000	
Total Operating Exp		410,000
Net operating Profit		
(Earnings Before Interest and Taxes – EBIT)		240,000
Interest Earned	2,000	
Interest Paid	5,000	
Taxable Income		237,000
Income Tax	47,000	

Note sequence of computations with net sales first, then operating profits then Net Income and finally net income after tax.

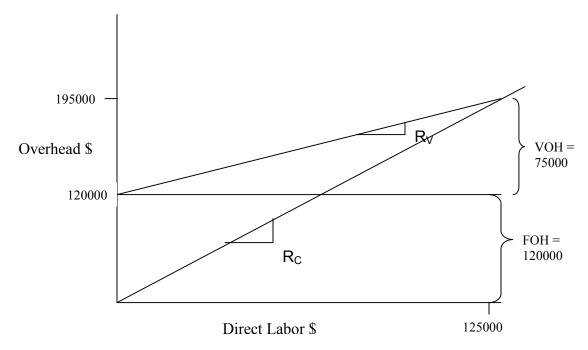
190,000

^{*} Inventory Jan 1 + Purchases – Purchase Returns – Inventory Sep 30 120000 + 270000 – 20000 – 160000 = 210,000

1-7

	East Coast	West Coast
ROA = Net Income After Tax / Total Assets	[200 - 0.4(200)] / 1000 = 120 /1000 = 12%	[750 – 0.4(750) / 5000 = 450 / 5000 = 9%
Net Income Arter Tax / Total Assets	- 1270	- 970
ROIC = Net Income After Tax / Investment Capital	120 / (1000 – 250) = 16%	450 / (5000 – 1500) = 12.9%
EVA = Op Income - IncTax- Invested CapCost	120- (10% * 750) =+ 45	450- (10%*3500) = +100

East Coast has higher returns on assets and invested capital but West Coast has a higher EVA. Why does this happen? Because East Coast under-invests. By focusing on high returns they are potentially by-passing projects that would add economic value.


ROE can't be calculated at the plant level. Equity is a corporate concept and could be allocated to plants only with great difficulty and many arguments about its validity.

If, as suggested in the text, the first 2 indicators are calculated on operating income (before tax) the value of the return percentages will change but the ranking discrepancy remains.

SOLUTIONS TO CHAPTER 2 PROBLEMS

Cost Measurement and The Cost Accounting System

2-1

Variable Overhead Rate = R_v = 75000 / 125000 = 60% of Direct Labor

Costing Rate = R_c = 195000 / 125000 = 156% of Direct Labor

Should use the 156% rate to cover all overhead costs.

2-2 Allocation Ratio = \$ 8000 / 1350 sq.ft = 5.93 \$/sq.ft

	Sq Feet	Allocation* (\$)
Drop Area	300	1777.78
Conveyor 1	100	593.00
Conveyor 2	150	889.50
Bench Area	800	4744.00
Total	1350	8000.00

^{*}Allocation = sq.ft (5.93 \$/sq.ft)

2-3 (a) Budget Allowances

Cost per square foot = \$ 67000 / 31100 = \$ 2.154 / sq.ft

Power bill per KWH = \$ 17800 / 56350 = \$ 0.316 / KWH

Maintenance assumed to be 100% variable Energy assumed to be 100% variable

For Energy, (Budget Allowances)

Forging 8300 x 0.316 x 115% = \$ 3015
Machining 43000 x 0.316 x 115% = \$ 15620
Finishing 3050 x 0.316 x 115% = \$ 1108
Packing 2000 x 0.316 x 115% = \$ 727
Total = \$ 20470

For Floor Space, (Budget Allowances)
Forging 5000 x 2.154 = \$ 10770
Machining 20000 x 2.154 = \$ 43080
Finishing 4000 x 2.154 = \$ 8620
Packing 2100 x 2.154 = \$ 4530
Total = \$ 67000

Summary of March Budget Allowances

Cost Center	March (DLH)	Sq Ft.	Floor Space (\$)	Maintenance (\$)	Energy (\$)
Forging	3580	5000	10770	14950	3015
Machining	10032	20000	43080	27025	15620
Finishing	5460	4000	8620	3968	1108
Packing	2133	2100	4530	575	727
Total	21205	31100	67000	46518	20470.00

(b) Budgeted Overhead Costing Rate

Note: All rates are to be calculated at 100% of budget volume

Normal DLH (@100%) = (DLH @ 115% x 100) / 115 i.e. (3580 x 100) / 115 = 3113 (10032 x 100) / 115 = 8723 and so on.

Floor Space charge is taken from the previous table in section (a). Since it is entirely fixed.

Maintenance cost remains the same as in the given table in the problem since it is stated at 100% (i.e. normal) volume.

Electricity (normal KWH) is also given at 100% in the table in the problem. Hence to calculate electricity charge in dollars we have.

Normal KWH x \$ 0.316 per KWH

i.e. 8300 x 0.316 =\$ 2623, and so on.

Total OH @ 100% = sum (floor space, maintenance and electricity)

i.e. For Forging 10770+13000+2623 = 26393

Blanket Rate for each Dept = Total OH rate (for each dept) / Normal DLH i.e. For Forging \$ 26393 / 3113 = \$ 8.478 /hr, and so on.

	Normal DLH	Floor Space Charge (\$)	Maintenance (\$)	Electricity (\$)	Total OH @ 100%	OH Rate (\$/DLH)
Forging	3113	10770	13000	2623	26393	8.478
Machining	8723	43080	23500	13580	80160	9.189
Finishing	4748	8620	3450	964	13034	2.745
Packing	<u>1855</u>	<u>4530</u>	<u>500</u>	<u>633</u>	<u>5663</u>	3.053
TOTALS	18439	67000	40450	17800	125250	6.793

2-4

Job	Machining Hrs	Finishing Hours	Total Hrs	Machine OH cost	Finishing OH Cost	Total OH Cost
1	1	10	11	\$9.189	\$27.45	\$36.64
2	9	2	11	\$82.7	\$5.49	\$88.19

OH rate = \$6.792 / DLH OH cost = 6.792 * 11 = \$74 .72

Use of OH Rate would overcost job1 and undercost job 2.

2-5

	DL\$	O/H rate (%)	OH Cost (\$)
Machining	23000	225	51750
Other Depts.	<u>89000</u>		<u>150000</u>
Totals	112000		201750
Overall OH Rate	$\frac{\$201750}{\$112000} = 1.8013$		

Overall Overhead Rate = 180%

Capital Investment Analysis for Engineering and Management 3rd Edition Canada Solutions Manual

Full Download: http://alibabadownload.com/product/capital-investment-analysis-for-engineering-and-management-3rd-edition-car

2-6 Maintenance cost assigned for broaching A123

Present System:

\$800000 / 400000 DLH = \$ 2 / DLH

Cost of Broaching 1 unit = 0.4 DLH/part x \$2 /DLH = \$ 0.80 per unit

Proposed System:

Maintenance cost for broaching 20% x 800000 = \$160,000

\$160000 / 20000 = \$8 per DLH

Cost of broaching 1 unit 0.4 DLH /part x \$ 8 per DLH = \$3.20 per unit

Thus, the maintenance overhead rate and cost assigned would be increased by a factor of 4.

2-7. If Mike staffs with 27 people per shift for the 20 days, he will incur labor charges of

$$27 \text{ men} \times \frac{3 \text{ shifts}}{\text{day}} \times \frac{20 \text{ days}}{\text{April}} \times \frac{8 \text{ hrs}}{\text{shift}} = 12960 \text{ man hours}$$

as an allowance for 12900 hours to make the production schedule exactly. Thus, Mike will run over budget. Although this seems unfair, he can overproduce to keep his operators busy. As he produces more, his actual budget allowance will increase. There is no need to adjust the standard over head allowances for the fact that his schedule does not work out to an integral number of people.