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Chapter 2

Problem 2.1

a)
Let

wy =T +jy

p(—k)=a+]b
We may then write

f=wrp*(—Fk)

=(z+jy)(a—jb)
=(ax + by) + j(ay — bx)

Letting
f=u+jv
where
u = ax + by

v=ay — bx

Hence,
ou_, o,
(%—a dy
v _ . ov_
oy ox
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PROBLEM 2.1. CHAPTER 2.

From these results we can immediately see that

ou_ou
or Oy

o0 __ou
or Oy

In other words, the product term wyp*(—k) satisfies the Cauchy-Riemann equations, and
so this term is analytic.

b)
Let
[ =wip* (k)
=(z —jy)(a+]b)
=(ax + by) + j(bx — ay)
Let
f=u+jv
with
u=az + by
v=br —ay
Hence,
ou ou
— =a —=b
ox dy
ov v
— =b — =—a
ox dy
From these results we immediately see that
ou v
oxr ' Oy
o __ou
dr Oy

In other words, the product term wjp(—k) does not satisfy the Cauchy-Riemann equations,
and so this term is not analytic.
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PROBLEM 2.2. CHAPTER 2.
Problem 2.2
a)
From the Wiener-Hopf equation, we have
wo=R7'p (1)

We are given that

1 05
R_{os 1}

105
P=10.25
Hence the inverse of R is

—1
. [1 05
R _{0.5 1}

1 [1 —05]
075 |05 1

Using Equation (1), we therefore get

wo_ L[ 1 -03]]05
=075 =05 1 | 025

b)

The minimum mean-square error is
Jmin :0-3 - pHWO
0.5
2
=0 — (0.5 0.25] { 0 ]
=05 —0.25
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PROBLEM 2.2. CHAPTER 2.

c)

The eigenvalues of the matrix R are roots of the characteristic equation:
(1-X)?—=(052=0
That is, the two roots are
A =05 and )Xy =1.5
The associated eigenvectors are defined by
Rq = \q
For A\; = 0.5, we have
os ] o] =05 1)
Expanded this becomes
¢11 + 0.5¢12 = 0.5¢11

0.5¢11 + q12 = 0.5¢12

Therefore,

d11 = —q12

Normalizing the eigenvector q; to unit length, we therefore have

-5l

Similarly, for the eigenvalue A\ = 1.5, we may show that

o4l
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PROBLEM 2.3.

CHAPTER 2.

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors

as follows:

2
1
Wo = <Z )\—%qf{> p
i=1 "

1 1
—aqqf + —qzq§>

4 2
_ |3 ~3|[o05
5 P o)
| 3 3
(4 1
_ _61+61
| 3 3
_[o.5
)
Problem 2.3

a)

From the Wiener-Hopf equation we have
wo=R"'p
We are given

1 05 025
R=1]05 1 05
025 05 1

and

p=1[05 025 0.125]"
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PROBLEM 2.3. CHAPTER 2.

Hence, the use of these values in Equation (1) yields

W :R_lp
1 05 025]1°'T 05
— 105 1 05 0.25
025 05 1 0.125
(133 —067 0 0.5
—|-067 167 —067] 025
0 —067 1.33] [0.125

wo=1[05 0 0]"

The Minimum mean-square error is
2 H
Jmin =04 — P Wo
0.5

=0, — [0.5 0.25 0.125] | O
0

=05 —0.25
c)
The eigenvalues of the matrix R are
(A1 A2 Ag] =[0.4069 0.75 1.8431]

The corresponding eigenvectors constitute the orthogonal matrix:

—0.4544 —0.7071 0.5418
Q= 0.7662 0 0.6426
—0.4544 0.7071  0.5418

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors
as follows:

3
1
W = (E /\—qZQF) |y
i=1 7"
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PROBLEM 2.4.

CHAPTER 2.
—0.4544
wo = 0.7662 | [-0.4544 0.7662 —0.4544]
0-4069 1 o 4544
| [0.7071]
+ 0 [-0.7071 0 —0.7071]
0-75 | 07071 |
0.5418]] 0.5
g | 06426 [0.5418 0.6426 0.5418] | x | 0.25
' 0.5418 0.125
0.2065 —0.3482 0.2065
0= | ——= [ —0.3482 0.5871 —0.3482
04069 1 92065 —0.3482  0.2065
L [05 0 05
+—1 0 0 0
0751 05 0 05
0.2935 0.3482 0.2935 0.5
+gpr 03482 04129 03482 | x| 0.25
' 0.2935 0.3482 0.2935 0.125
0.5
=10
0
Problem 2.4

By definition, the correlation matrix

R = E[u(n)u” (n)]

Where
u(n)
u(n —1
u(n) = ( | )
u(0)
Invoking the ergodicity theorem,
. N
R(N) = o1 2 u(n)u(n)
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PROBLEM 2.5. CHAPTER 2.

Likewise, we may compute the cross-correlation vector
p = E[u(n)d"(n)]

as the time average

1 N

N+ 14~

p(N) u(n)d*(n)

The tap-weight vector of the wiener filter is thus defined by the matrix product

wo(N) = (Z u(n)uH(n)> (Z u(n)d* (n))

n=0 n=0
Problem 2.5

a)
R =E[u(n)u(n)]
=E[(a(n)s(n) + v(n))(a"(n)s" (n) + v (n)))
With a(n) uncorrelated with v(n), we have

R =E[la(n))s(n)s" (n) + E[v(n)v" (n)]
=02s(n)s” (n) + R,

where R, is the correlation matrix of v

b)

(1

The cross-correlation vector between the input vector u(n) and the desired response d(n)

is
p = Efu(n)d*(n)]

If d(n) is uncorrelated with u(n), we have
p=0

Hence, the tap-weight of the wiener filter is

wo =R 'p
=0

28
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PROBLEM 2.5. CHAPTER 2.

c)

With o2 = 0, Equation (1) reduces to
R=R,

with the desired response
d(n) =v(n —k)

Equation (2) yields

v(n)1
s R K )
| [v(n— M +1)
ry(n)
g | Y 0<k<M-—1
= | L 0<k< M- (3)
(k= M+ 1)

where 7, (k) is the autocorrelation of v(n) for lag k. Accordingly, the tap-weight vector of
the (optimum) wiener filter is

Wy :R_lp
=R, 'p

where p is defined in Equation (3).

d)

For a desired response

d(n) = a(n) exp(—jwT)
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PROBLEM 2.6. CHAPTER 2.
The cross-correlation vector p is
p =E[u(n)(d"n)]
=E[(a(n)s(n) + v(n)) a*(n) exp(—jwr)]
=s(n) exp(jwr)E[|a(n)[’]
—o2s(n) exp(jwr)
[ 1
exp(—jw
o2 PO )
exp((—jw)(M — 1))
[ exp(jwr)
) exp(jw(r — 1))
:O’a .
exp((j)(r — M +1))
The corresponding value of the tap-weight vector of the Wiener filter is
[ exp(jwr) ]
exp(jw(T —1
wo =02 (02s(n)s” (n) + R,) ™ Pl ( )
exp((jw)(T — M +1))
[ exp(jwr) ]
1 -1 exp(jw(T —1
= <s(n)sH(n) + —QRU) Pl ( )
lexp((jw)(T — M +1))
Problem 2.6
The optimum filtering solution is defined by the Wiener-Hopf equation
Rwy=p (1)
for which the minimum mean-square error is
Jmin - 0-3 - pHWO (2)
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PROBLEM 2.6. CHAPTER 2.

Combine Equations (1) and Equation(2) into a single relation:

0'3 pH 1 o Jmin
p R||lwg|] | O
Define
A= [03 PH} 3)
Since
oq = Eld(n)d(n)]
p = Efu(n)d*(n)]
R = E[u(n)u” (n)]
we may rewrite Equation (3) as

 [E[d(n)d*(n)] Eld(n)u” (n)
A= [E[um)d*(nn E[u(n)u%)ﬂ

= { L e v

The minimum mean-square error equals

Jmin = O'Z — pHWO (4)

Eliminating 03 between Equation (1) and Equation (4):

J(W) = Jmin + P"wo — p"Rw — w’Rwg + w'Rw (5)

Eliminating p between Equation (2) and Equation (5)

J(W) = Jmin + Wé{RWO — Wé{RW — WHRWO + wiRw ©)

where we have used the property R = R. We may rewrite Equation (6) as

J(W) = Jin + (W — wo) "R(wW — wy)

which clearly shows that J(wg) = Jiin
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PROBLEM 2.7. CHAPTER 2.

Problem 2.7
The minimum mean-square error is

Jmin = 05 —p"R™'p (1)
Using the spectral theorem, we may express the correlation matrix R as

R = QAQ”

M
R =) \aqy )
k=1

Substituting Equation (2) into Equation (1)

M
1

Jinin =05 — E )\_kaqkaqk:

=1

M

1
=i =2 5Pl

k=1

Problem 2.8

When the length of the Wiener filter is greater than the model order m, the tail end of the
tap-weight vector of the Wiener filter is zero; thus,

wo = |
°~ 1o
Therefore, the only possible solution for the case of an over-fitted model is
wo = |2m
°~ 1o
Problem 2.9
a)

The Wiener solution is defined by
Ryay =pu
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PROBLEM 2.10. CHAPTER 2.

RM y—m A — Pm
r]\H4_m RM—m,M—m OM—m Pr—-m

RMam = Pm
H
yr—m@m = PM-—m
H H —1
Prv—m =Yy p@m = I‘Mfm:R']\/[ Pm (1)

b)
Applying the conditions of Equation (1) to the example in Section 2.7 in the textbook

= [—0.05 0.1 0.15]

0.8719
a, = [—0.9129
0.2444

The last entry in the 4-by-1 vector p is therefore

ri_ a, =—0.0436 — 0.0912 + 0.1222
=—0.0126

Problem 2.10

2 H
Jmin =04, —P Wy

=a;-p"R7'p
when m = 0,
Jmin = 03
=1.0
When m =1,

1
Jmin =1 — 0.5 % 11 x 0.5
= 0.9773
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PROBLEM 2.11. CHAPTER 2.

when m = 2

Jmin =1 — (0.5 —0.4] [1.1 0.5] - [ 0.5 ]

05 11| |-04
—1-0.6781
— 0.3219
when m = 3,
11 05 011 ' [05
Jain=1—1[05 —04 —02] [05 1.1 05 —0.4
01 05 1.1 0.2
— 1 —0.6859
— 0.3141

when m = 4,

Jmin = 1 — 0.6859
= 0.3141

Thus any further increase in the filter order beyond m = 3 does not produce any meaning-
ful reduction in the minimum mean-square error.

Problem 2.11
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PROBLEM 2.11. CHAPTER 2.

a)

) = x(n) +v,(n)
n) = —d(n —1) x 0.8458 + v, (n)
) =d(n)+0.9458z(n — 1)

u

d

(n
(
z(n
Equation (3) rearranged to solve for d(n) is
d(n) = z(n) — 0.9458z(n — 1)
Using Equation (2) and Equation (3):
z(n) — 0.9458x(n — 1) = 0.8458[—xz(n — 1) 4+ 0.9458z(n — 2)] + v, (n)

Rearranging the terms this produces:

z(n)

(0.9458 — 8.8458)z(n — 1) + 0.8z (n — 2) + v, (n)
(0.1)z(n —1) 4+ 0.8xz(n — 2) +v,(n)

b)
u(n) = 2(n) +v,(n)
where z(n) and vy(n) are uncorrelated, therefore

R=R, +R,

R [0 )]

72(0) :Ui
14 as O’%

pu— :1
1—ay(1+ag)?—a?

1+ a9

r:(1) =
ro(1) = 0.5

35

)
(2)
3)



PROBLEM 2.11. CHAPTER 2.

1 05
R {0.5 1 ]

0.1 0
R, { 0 0.1}

p(0) =r;(0) + by, (—1)
=1—0.9458 x 0.5
=0.5272

p(1) =ry(1) + by, (0

=0.5 — 0.9458
= —0.4458
Therefore,
~ 1 0.5272
| —0.4458
c)

The optimal weight vector is given by the equation w, = R™'p; hence,

C[1.1 05]7' [ 05272
Wo=1l05 1.1 —0.4458

[ 0.8363
~ |-0.7853
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PROBLEM 2.12. CHAPTER 2.

Problem 2.12
a)

For M = 3 taps, the correlation matrix of the tap inputs is

1.1 05 0.85
R=|[05 11 05
0.85 0.5 1.1

The cross-correlation vector between the tap inputs and the desired response is

0.527
p=|—0.446
0.377

b)
The inverse of the correlation matrix is

2234 —0.304 —1.666
R'=|-0304 1.18 —0.304
—1.66 —0.304 2.234

Hence, the optimum weight vector is
0.738
wo =R 'p=[-0.803
0.138

The minimum mean-square error is

Jimin = 0.15
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PROBLEM 2.13. CHAPTER 2.

Problem 2.13
a)

The correlation matrix R is
R =E[u(n)u”(n)]

e
—jwi(n—1) . . -
:EHA1’2] : [6+Jw1n €+Jw1(n71) o e+Jw1(n7M+1)}

—jwin

efjuu (7.17M+1)
=E[|Ar]*]s(w1)s" (w1) + IE[Ju(n)]
=ois(w)s™ (wy) + 0’1

where I is the identity matrix.

b)

The tap-weights vector of the Wiener filter is
Wy = R_lp

From part a),

R = o7s(w1)s” (wy) + 0’1
We are given
P = os(wo)

To invert the matrix R, we use the matrix inversion lemma (see Chapter 10), as described

here:
If:

A=B'+CD'C”
then:
A'=B-BC(D+C"BC)'C"B
In our case:

A:azI
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PROBLEM 2.14. CHAPTER 2.

B! =01
D! = o}
C = s(w)
Hence,
1 H
1 ;s(wl)s (wl)
R—l — —I - v
o} ‘712; H
—5 + 87 (wi)s(w1)
01

The corresponding value of the Wiener tap-weight vector is

wo =R 'p
2
o
o2 U—gs(wl)sH(wl)
Wy = ;s(wo) o s(wo)
! —5 + s (wi)s(w1)
01
we note that
SH(wl)s(wl) =M
which is a scalar hence,
O'2 0'2 SH w1 )S(W1
Wy = —gs(wo) — —g 5 ) ( )S<WO)
O-'U O-'U & _|_ M

Problem 2.14

The output of the array processor equals
e(n) = u(l,n) —wu(2,n)
The mean-square error equals

E[le(n)|’]
E[(u(1,n) — wu(2,n))(u*(1,n) — w*u*(2,n))]
Ellu(1,n)]?] + [w[’E[Ju(2,n)[’] = wE[u(2, n)u*(1,n)] = wE[u(1,n)u*(2,n)]

J(w)

[lu

39



PROBLEM 2.15. CHAPTER 2.

Differentiating .J(w) with respect to w:

o0J

5 = —2E[u(1,n)u*(2,n)] + 2wE[|u(2, n)|?]

aJ
Putting o 0 and solving for the optimum value of w:
w

Problem 2.15
Define the index of the performance (i.e., cost function)
J(w) = E[le(n)’] + c"s'w + wisc — 2¢7 D21

J(w) = wlRw + cfsfw + wlsc — 2¢/DY?1

Differentiate .J(w) with respect to w and set the result equal to zero:

o0J
— =2Rw+2sc =0
ow
Hence,
wo = —R 7 !sc

But, we must constrain w as
sflwy = DY/?1

therefore, the vector ¢ equals
c=—(s"R7's)"'DV*1

Correspondingly, the optimum weight vector equals

wo = R7s(sR71s) D21
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PROBLEM 2.16. CHAPTER 2.

Problem 2.16

The weight vector w of the beamformer that maximizes the output signal-to-noise ratio:

wHRgw
SNR), = ————
( Jo wHR,w

is derived in part b) of the problem 2.18; there it is shown that the optimum weight vector
wgy so defined is given by

wsy = R, 's (1)

where s is the signal component and R, is the correlation matrix of the noise v(n). On
the other hand, the optimum weight vector of the LCMV beamformer is defined by

I e C)
©7 7 sH(g)R1s(9)

2)

where s(¢) is the steering vector. In general, the formulas (1) and (2) yield different values
for the weight vector of the beamformer.

Problem 2.17

Let 7; be the propagation delay, measured from the zero-time reference to the ith element
of a nonuniformly spaced array, for a plane wave arriving from a direction defined by
angle 6 with respect to the perpendicular to the array. For a signal of angular frequency w,
this delay amounts to a phase shift equal to —w;. Let the phase shifts for all elements of
the array be collected together in a column vector denoted by d(w, 8). The response of a
beamformer with weight vector w to a signal (with angular frequency w) originates from
angle §# = wd(w, ). Hence, constraining the response of the array at w and 6 to some
value g involves the linear constraint

wid(w,0) =g

Thus, the constraint vector d(w, 0) serves the purpose of generalizing the idea of an LCMV
beamformer beyond simply the case of a uniformly spaced array. Everything else is the
same as before, except for the fact that the correlation matrix of the received signal is no
longer Toeplitz for the case of a nonuniformly spaced array
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PROBLEM 2.18. CHAPTER 2.

Problem 2.18
a)

Under hypothesis [, we have
u=s+v

The correlation matrix of u equals
R = E[uu’]

R =ss’ + Ry, where Ry = E[vv’]

The tap-weight vector wy is chosen so that Wgu yields an optimum estimate of the kth
element of s. Thus, with s(k) treated as the desired response, the cross-correlation vector
between u and s(k) equals

pr =E[us(k)]
=ss(k), k=1,2,...,m

Hence, the Wiener-Hopf equation yields the optimum value of wy, as
wio = R7'py,

wio = (ss” +Ry) 'ss(k), k=1,2,....M )

To apply the matrix inversion lemma (introduced in Problem 2.13), we let

A=R
B !=Ry
C=s
D=1
Hence,
Ri'ss’R!
Rfl — R*l _ N N 2
M1+ sTRy's 2

Substituting Equation (2) into Equation (1) yields:

Ry'ss"R,
— -1 N N
o= (R TR ) st
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PROBLEM 2.18. CHAPTER 2.

Ry's(1+sTRy's) — Ry'ss’Ry's
1+ sTRy's

s(k)

Wio =

s(k)

W R
1+sTRys Y

Wio

b)

The output signal-to-noise ratio is

SNR =

- 3)

Since R is positive definite, we may write,

Ry = Ry°Ry’
Define the vector

a= R%QW
or equivalently,

w =RV )
Accordingly, we may rewrite Equation (3) as follows

TR2.TRL/2
a’Ry'ssRy’a

aTa

SNR = @)

where we have used the symmetric property of R . Define the normalized vector

_ a
a=—-
|al|

where ||a|| is the norm of a. Equation (5) may be rewritten as:

SNR = a"R}/’ss"R)’a

43



PROBLEM 2.18. CHAPTER 2.

2
SNR = ‘aTR}V/QS‘

Thus the output signal-to-noise ratio SNR equals the squared magnitude of the inner prod-
—1/2

uct of the two vectors a and R}fs. This inner product is maximized when a equals R 5,
That is,
~1/2
asy = Ry’ (6)

Let wgy denote the value of the tap-weight vector that corresponds to Equation (6).
Hence, the use of Equation (4) in Equation (6) yields

Wy = R&l/z(R]_VlmS)

Wgon = R]_VIS

c)

Since the noise vector v(n) is Gaussian, its joint probability density function equals

1 |
M) = Gy ae@a )2 P (‘év Ry V)

Under the hypothesis H, we have

u=v

and

B 1 1 74
fululHo) = (2m)M72(detRy )12 (_5“ Ry “)
Under hypothesis f1; we have
u=s-+v

and

1 1 T -1
fululHy) = (2m) 72 (detRy )12 P (_E(u —s) Ry (u- s))

Hence, the likelihood ratio is defined by
_ Ju(u|Hy)

fU(u|H0)
1
=exp (—§STR;,1S + STR]_Vlu)
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PROBLEM 2.19. CHAPTER 2.

The natural logarithm of the likelihood ratio equals
1
InA = —§STijls + sTRglu (7

The first term in (7) represents a constant. Hence, testing In A against a threshold is equiv-
alent to the test

Hy
Tp-1
ssRyu 2 A

Hy

where ) is some threshold. Equivalently, we may write
Wy = R]_Vls

where w,, is the maximum likelihood weight vector.
The results of parts a), b), and ¢) show that the three criteria discussed here yield the
same optimum value for the weight vector, except for a scaling factor.

Problem 2.19
a)

Assuming the use of a noncausal Wiener filter, we write

o0

> wr(i— k) =p(—k), k=0+1,£2 ... +oo (1)
where t_he sum now extends from ¢ = —oo to ¢ = oo. Define the z-transforms:
S(z) = i r(k)zF, H,(z) = i Wo k2
k=—o0 k=—o00
P()= 3 pok) = PG
k=—o0

Hence, applying the z-transform to Equation (1):

H,(2)S(z) = P(z7")

() = T1/2) )
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PROBLEM 2.19. CHAPTER 2.

b)
0.36
P(z) =
(1 - %) (1—0.22)
0.36
P(1/z) =
(1-0.22) (1 - %)

S(2) = | 37 (1= 0.146271)(1 — 0.146z)

(1 -0.2z71)(1 —0.22)
Thus, applying Equation (2) yields

0.36
1.37(1 — 0.14621)(1 — 0.1462)
0.36z71
1.37(1 — 0.146271)(2~1 — 0.146)
0.2685 0.0392
1—0.146z1 + 271 —0.146

H,(z) =

Clearly, this system is noncausal. Its impulse response is h(n) = inverse z-transform of
H,(z) is given by

h(n) = 0.2685(0.146) " tgep (1) —

00392/ 1 \" )
0.146 \0.146) ‘el

where ugep () is the unit-step function:

(n) = lforn=0,1,2,...
Usteo\) =9 0 forn = —1,-2,...

and ugep(—n) is its mirror image:

lforn=0,—-1,-2,...
Usep(=1) =\ (forn — 1.2,

Simplifying,

hy(n) = 0.2685 x (0.146) " ugep(n) — 0.2685 X (6.849) " tgep(—n)
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PROBLEM 2.19. CHAPTER 2.

Evaluating h,,(n) for varying n:

hy(0) = 0
ha(1) = 0.03, ha(2) = 0.005, ha(3) = 0.0008
ho(—1) = —0.03, hy(—2) = —0.005, hy(—3) = —0.0008

The preceding values for h,(n) are plotted in the following figure:

hy(n) 4

»

4+003 @

T 0.01

L

c)
A delay of 3 time units applied to the impulse response will make the system causal and
therefore realizable.
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