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Chapter 1

Arithmetic in Z Revisited

1.1 The Division Algorithm

1. (a) g=4,r=1. (b) ¢=0,r=0. (¢) ¢g=—-5,r=3.

2. (a) ¢q=-9,r=3. (b) ¢ =15,r=17. (¢) ¢ =117, r =11.

3. (a) ¢=6,r=19. (b) ¢ =-9, r =54. (¢) ¢ =62720, r = 92.
4. (a) q= 15021, r = 132. (b) ¢ = —14940, = 335. (¢) ¢ = 39763, r = 3997.

5. Suppose a = bg + r, with 0 < r < b. Multiplying this equation through by ¢ gives ac = (bc)q + rc.
Further, since 0 < r < b, it follows that 0 < rc < be. Thus this equation expresses ac as a multiple
of bc plus a remainder between 0 and bc — 1. Since by Theorem 1.1 this representation is unique,
it must be that ¢ is the quotient and rc the remainder on dividing ac by be.

6. When ¢ is divided by ¢, the quotient is k, so that ¢ = ck. Thus a = bg+r = b(ck) +r = (be)k + 7.
Further, since 0 < r < b, it follows (since ¢ > 1) than 0 < r < be. Thus a = (bc)k + r is the unique
representation with 0 < r < be, so that the quotient is indeed k.

7. Answered in the text.

8. Any integer n can be divided by 4 with remainder r equal to 0, 1, 2 or 3. Then either n = 4Kk,
4k + 1, 4k + 2 or 4k + 3, where k is the quotient. If n = 4k or 4k + 2 then n is even. Therefore if
nis odd then n = 4k + 1 or 4k + 3.

9. We know that every integer a is of the form 3q, 3q + 1 or 3q + 2 for some g. In the last case
a® = (3q + 2)° = 27¢° + 54¢? + 360 + 8 = 9k + 8 where k = 3¢® + 60? + 4q. Other cases are similar.

10. Supposea =ng+rwhere0<r<nandc=ng'+ r'where0<r'<n.Ifr=r'thena-c=
n(q-q) and k = q — q’is an integer. Conversely, given a — ¢ = nk we can substitute to find:
(r—=r’)=n(k-q+ q)). Suppose r >r’ (the other case is similar). The given inequalities imply
that 0 < (r - r) < nand it follows that 0 < (k — q + g) < @ and we conclude that k- q + g’ = 0.
Therefore r — r'= 0, so that r = r’as claimed.


https://alibabadownload.com/product/abstract-algebra-an-introduction-3rd-edition-hungerford-solutions-manual/

Arithmetic in Z Revisited

11.

Given integers a and ¢ with ¢ #0. Apply Theorem 1.1 with b = |c| to get a = |c| - q,+ r where 0
<r<|c|.Letq=gq,ifc>0and q=—-q, if c < 0. Then a = cq + r as claimed. The uniqueness is
proved as in Theorem 1.1.

1.2 Divisibility

10.

11.

12.

a) 8 (d) 11. (g) 592.
(b) (e) 9. (h) 6
¢) 1 (f) 17

If b | a then a = bx for some integer x. Then a = (-b)(-x) so that (-b) | a. The converse follows
similarly.

Answered in the text.

(a) Given b = ax and ¢ = ay for some integers X, y, we find b + ¢ = ax + ay = a(x + y).
Since x + y is an integer, conclude that a | (b + ¢).

(b) Given x and y as above we find br + ct = (ax)r + (ay)t = a(xr + yt) using the associative
and distributive laws. Since xr + yt is an integer we conclude that a | (br + ct).

Since a | b, we have b = ak for some integer k, and a # 0. Since b | a, we have a = bl for some
integer I, and b # 0. Thus a = bl = (ak)l = a(kl). Since a # 0, divide through by a to get 1 = kl.
But this means that £k = +1 and [ = +1, so that a = + b.

Given b = ax and d = cy for some integers X, y, we have bd = (ax)(cy) = (ac)(xy). Then ac | bd
because xy is an integer.

Clearly (a,0) is at most |a| since no integer larger than |a| divides a. But also |a| | a, and |a| | O
since any nonzero integer divides 0. Hence |a| is the ged of a and 0.

Ifd=(,n+1)thend|nandd| (n+ 1). Since (n + 1) - n = 1 we conclude that d | 1. (Apply
Exercise 4(b).) This implies d = 1, since d > 0.

No, ab need not divide c¢. For one example, note that 4 | 12 and 6 | 12, but 4 - 6 = 24 does not
divide 12.

Sincea|aanda|0wehave a| (a, 0). If (a, 0) =1 then a | 1 forcing a = *1.

(@ lor2 (b 1,2,30r6. Generally ifd =(n,n+c) thend | nand d | (n + c).

Since c is a linear combination of n and n+c, conclude that d | c.

(a) False. (ab,a) is always at least a since a | ab and a | a.
(b) False. For example, (2,3) =1 and (2,9) = 1, but (3,9) = 3.
(c¢) False. For example, let a =2, b =3, and ¢=9. Then (2,3) =1=(2,9), but (2-3,9) = 3.
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13.

14.

15.

16.

17.

18.

19.

(a) Suppose ¢ | a and ¢ | b. Write a = ¢k and b = ¢l. Then a = bg + r can be rewritten
ck = (cl)qg+ r, so that r = ck — clg = ¢(k — lg). Thus ¢ | r as well, so that ¢ is a common
divisor of b and r.

(b) Suppose ¢ | b and ¢ | r. Write b = ck and r = ¢l, and substitute into a = bg + r to get
a = ckq+ cl = c(kq+1). Thus ¢ | a, so that ¢ is a common divisor of a and b.

(c) Since (a,b) is a common divisor of a and b, it is also a common divisor of b and r, by part (a).
If (a,b) is not the greatest common divisor (b,r) of b and r, then (a,b) > (b,r). Now, consider
(b,r). By part (b), this is also a common divisor of (a,b), but it is less than (a,b). This is a
contradiction. Thus (a,b) = (b,r).

By Theorem 1.3, the smallest positive integer in the set S of all linear combinations of a and b is

exactly (a, b).

(@) (6,15) =3 (b) (12, 17)=1.

(a) This is a calculation.

(b) At the first step, for example, by Exercise 13 we have (a,b) = (524, 148) = (148,80) = (b,r).
The same applies at each of the remaining steps. So at the final step, we have (8,4) = (4, 0);
putting this string of equalities together gives

(524, 148) = (148,80) = (80, 68) = (68,12) = (12,8) = (8,4) = (4,0).

But by Example 4, (4,0) = 4, so that (524, 148) = 4.

(c) 1003 =56-17+51,56 =51-1+5,51 =5-10+1, 5=1-5+ 0. Thus (1003,56) = (1,0) = 1.

(d) 322 =148 -2+ 26, 148 =26-5+ 18,26 =18-1+8,18 =8-2+2, 8 = 2-4 + 0, so that
(322,148) = (2,0) = 2.

(e) 5858 = 1436-4+ 114, 1436 = 114-12+ 68, 114 =68 - 1 + 46, 68 =46 - 1 + 22, 46 = 22 -2 + 2,
22 =211+ 0, so that (5858, 1436) = (2,0) = 2.

(f) 68 =148 — (524 — 148 - 3) = —524 + 148 - 4.

(g) 12=80—68-1 = (524 — 148 - 3) — (=524 + 148 - 4) -1 =524 -2 — 148 - 7.

(h) 8=68—12-5=(—524+148-4) — (524-2— 148 -7) -5 = —524 - 11 + 148 - 39.

(1) 4=12 -8 = (5242 — 148 - 7) — (=524 - 11 + 148 - 39) = 524 - 13 — 148 - 46.

(j) Working the computation backwards gives 1 = 1003 - 11 — 56 - 197.

Let a = da, and b = db,. Then a; and b, are integers and we are to prove: (a;, b;) = |. By
Theorem 1.3 there exist integers u, v such that au + bv = d. Substituting and cancelling we find
that a,u + b,v = I. Therefore any common divisor of a, and b; must also divide this linear
combination, so it divides 1. Hence (a;, b;) = 1.

Since b | ¢, we know that ¢ = bt for some integer ¢. Thus a | ¢ means that a | bt. But then Theorem
1.4 tells us, since (a,b) = 1, that a | t. Multiplying both sides by b gives ab | bt = c.

Let d = (a, b) so there exist integers z, y with ax + by = d. Note that cd | (ca, cb) since cd
divides ca and ch. Also cd = cax + chy so that (ca, cb) | cd. Since these quantities are positive we
get cd = (ca, cd).

Let d = (a, b). Since b + ¢ = aw for some integer w, we know c is a linear combination of a and b
so that d |c. But then d | (b,c) = 1 forcing d = 1. Similarly (a,c) = 1.
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20. Letd = (a, b) and e = (a, b + at). Since b + at is a linear combination of a and b, d | (b + at) so
that d | e. Similarly since b = a(-t) + (b + at) is a linear combination of a and b + at we know e
| b so that e | d. Therefore d = e.

21. Answered in the text.

22. Let d = (a, b, ¢). Claim: (a, d) = I. [Proof: (a, d) divides d so it also divides c. Then (a, d) | (a, ¢)
= 1 so that (a, d)= 1.] Similarly (b, d)= 1. But d | ab and (a, d) = 1 so that Theorem 1.5 implies
that d | b. Therefore d = (b. d) = 1.

23. Define the powers b" recursively as follows: b* = b and for everyn > 1, b"** = b - b". By
hypothesis (a, b*) = 1. Given k > 1, assume that (a, b¥) = 1. Then (a, b**%) = (a, b - b¥) = 1 by
Exercise 24. This proves that (a, b") = 1 for every n > 1.

24. Letd = (a, b). If ax + by = c for some integers z, y then c is a linear combination of a and b so
that d | c. Conversely suppose ¢ is given with d | ¢, say ¢ = dw for an integer w. By Theorem 1.3
there exist integers u, v with d = au + bv. Then ¢ = dw = auw + bvw and we use x = uw and
y = vw to solve the equation.

25. (a) Given au + bv = 1 suppose d = (a, b). Then d | aand d | b so that d divides the linear

combination au + bv = 1. Therefore d = 1.
(b) There are many examples. For instance ifa=b=d=u=v =1then (a,b) = (1, 1)=1
whiled =au+bv=1+1=2.

26. Let d = (a, b) and express a = da, and b = db, for integers a,, b,. By Exercise 16, (a;, b;) = 1.
Since a | ¢ we have ¢ = au = da,u for some integer u. Similarly ¢ = bv = db,v for some integer v.
Then a,u = ¢/d = b,V and Theorem 1.5 implies that a, | v so that v = a,w for some integer w.
Then ¢ = da,b,w so that cd = d%a,b,w = abw and ab | cd.

27. Answered in the text.

28. Suppose the integer consists of the digits apan—1 ...a1a9. Then the number is equal to

D ap10" =Y ar(10F = 1)+ ay.

k=0 k=0 k=0
Now, the first term consists of terms with factors of the form 10¥ — 1, all of which are of the form
999...99, which are divisible by 3, so that the first term is always divisible by 3. Thus ZZ:O a,10F
is divisible by 3 if and only if the second term )", _, aj is divisible by 3. But this is the sum of the
digits.

29. This is almost identical to Exercise 28. Suppose the integer consists of the digits ana,—1 . ..a1a0.

Then the number is equal to

zn: ap10% = zn: ar(10F — 1) + zn: a.
k=0 k=0

k=0

Now, the first term consists of terms with factors of the form 10¥ — 1, all of which are of the form
999...99, which are divisible by 9, so that the first term is always divisible by 9. Thus ZZ:O ax10F
is divisible by 9 if and only if the second term ZZ:O ay, is divisible by 9. But this is the sum of the
dicits.
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30. Let S = {a;x; + ax, + - + aX, : X; X, ..., X are integers}. As in the proof of Theorem 1.3, S
does contain some positive elements (for if a; # 0 then a? e S is positive). By the Well Ordering
Axiom this set S contains a smallest positive element, which we call t. Suppose t = a,u;, + a,u, +

- + a,u, for some integers u;.

Claim. t = d. The first step is to show that t | a. By the division algorithm there exist integersq
and rsuch thata, =tqg+rwith0<r <t Thenr=a, -tq = a,(1 - u,q) + a,(-u,q) + - +
a,(-u,q) is an element of S. Since r < t (the smallest positive element of S), we know r is not
positive. Since r > 0 the only possibility is r = 0. Therefore a, = tq and t | a,. Similarly we have
t| a; for each j, and t is a common divisor of a,, a,,"**, a,. Then t < d by definition.

On the other hand d divides each a; so d divides every integer linear combination of a;, a,,, a,.
In particular, d | t. Since t > 0 this implies that d <t and therefore d = t.

31. (a) [6,10] = 30; [4,5,6,10] = 60; [20,42] = 420, and [2, 3,14, 36, 42] = 252.

(b) Suppose a; |t for i = 1,2,...,k, and let m = [aj,az,...,a;]. Then we can write t = mq+r
with 0 < 7 < m. For each 4, a; | t by assumption, anda; | m since m is a common multiple
of the a; Thus a; | (t — mg) = r. Since a; | r for each i, we see that r is a common multiple
of the a;. But m is the smallest positive integer that is a common multiple of the a;; since
0 < r < m, the only possibility is that » = 0 so that ¢t = mgq. Thus any common multiple of
the a; is a multiple of the least common multiple.

32. First suppose that ¢ = [a,b]. Then by definition of the least common multiple, ¢ is a multiple of
both a and b, so that ¢t | a and ¢ | b. If a | ¢ and b | ¢, then ¢ is also a common multiple of @ and b,
so by Exercise 31, it is a multiple of ¢ so that ¢ | c.

Conversely, suppose that ¢ satisfies the conditions (i) and (ii). Then since a | ¢ and b | ¢, we see that
t is a common multiple of a and b. Choose any other common multiple ¢, so that a | ¢ and b | c.
Then by condition (ii), we have ¢ | ¢, so that ¢t < c. It follows that ¢ is the least common multiple
of a and b.

33. Let d = (a,b), and writea = da; and b = db;. Write m = %b = ”mliddbl = da1by. Since a and b are
both positive, so is m, and since m = da1b; = (da1)by = ab; and m = da1by = (db1)a; = bay, we
see that m is a common multiple of a and b. Suppose now that k is a positive integer with a | &
and b | k. Then k = au = bv, so that k = daju = dbyv. Thus % = aju = byv. By Exercise 16,
(a1,b1) = 1, so that ay | v, say v = ayw. Then k = dbjv = dbjajw = mw, so that m | k. Thus

m < k. It follows that m is the least common multiple. But by construction, m = (sl;) = %b.

34. (a) Let d = (a,b). Since d | a and d | b, it follows that d | (a + b) and d | (a — b), so that d is a
common divisor of a + b and a — b. Hence it is a divisor of the greatest common divisor, so
that d = (a,b) | (a+b,a —b).

(b) We already know that (a,b) | (a+b,a—b). Now suppose that d = (a+b,a—b). Then a+b = dt
and a — b = du, so that 2a = d(t + u). Since a is even and b is odd, d must be odd. Since
d | 2a, it follows that d | a. Similarly, 2b = d(t — u), so by the same argument, d | b. Thus d is
a common divisor of a and b, so that d | (a,b). Thus (a,b) = (a + b,a — b).

(¢) Suppose that d = (a +b,a —b). Then a + b = dt and a — b = du, so that 2a = d(t + u). Since
a and b are both odd, a + b and a — b are both even, so thatd is even. Thus a = g(t +u), so
that ¢ | a. Similarly, ¢ | b, so that ¢ = @220 | (4 ) | (a+b,a—b). Thus (a,b) = @F2a=t)
or (a,b) = (a + b,a — b). But since (a,b) is odd and (a + b,a — b) is even, we must have
(a-%ﬂ = (a,b), or 2(a,b) = (a +b,a —b).
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