
Chapter 1

Arithmetic in Revisited

1.1 The Division Algorithm

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = −5, r = 3.

2. (a) q = −9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

3. (a) q = 6, r = 19. (b) q = −9, r = 54. (c) q = 62720, r = 92.

4. (a) q = 15021, r = 132. (b) q = −14940, r = 335. (c) q = 39763, r = 3997.

5. Suppose a = bq + r, with 0 ≤ r < b. Multiplying this equation through by c gives ac = (bc)q + rc.
Further, since 0 ≤ r < b, it follows that 0 ≤ rc < bc. Thus this equation expresses ac as a multiple
of bc plus a remainder between 0 and bc − 1. Since by Theorem 1.1 this representation is unique,
it must be that q is the quotient and rc the remainder on dividing ac by bc.

6. When q is divided by c, the quotient is k, so that q = ck. Thus a = bq + r = b(ck) + r = (bc)k + r.
Further, since 0 ≤ r < b, it follows (since c ≥ 1) than 0 ≤ r < bc. Thus a = (bc)k + r is the unique
representation with 0 ≤ r < bc, so that the quotient is indeed k.

7.

8.

9.

10.
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Answered in the text. 

Any integer n can be divided by 4 with remainder r equal to 0, 1, 2 or 3. Then either n = 4k,  
4k + 1, 4k + 2 or 4k + 3, where k is the quotient. If n = 4k or 4k + 2 then n is even. Therefore if
n is odd then n = 4k + 1 or 4k + 3. 

We know that every integer a is of the form 3q, 3q + 1 or 3q + 2 for some q. In the last case
 a = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9k + 8 where k = 3q3 + 6q2 + 4q. Other cases are similar. 

Suppose a = nq + r where 0 ≤ r < n and c = nq' + r' where 0 < r' < n. If r = r' then a – c =  
n(q – q') and k = q – q' is an integer. Conversely, given a – c = nk we can substitute to find:  
(r – r') = n(k – q + q'). Suppose r ≥ r  (the other case is similar). The given inequalities imply 
that 0 ≤ (r – r') < n and it follows that 0 ≤ (k – q + q') < 10000  k – q + q' = 0. 
Therefore r – r' = 0, so that r = r' as claimed. 

3

1 and we conclude that
'
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1.2 Divisibility

1. (a) 8.

(b) 6.

(c) 1.

(d) 11.

(e) 9.

(f) 17.

(g) 592.

(h) 6.

2.

3.

4.

5. Since a | b, we have b = ak for some integer k, and a 6= 0. Since b | a, we have a = bl for some
integer l, and b 6= 0. Thus a = bl = (ak)l = a(kl). Since a 6= 0, divide through by a to get 1 = kl.
But this means that k = ±1 and l = ±1, so that a = ± b.

6.

7. Clearly (a, 0) is at most |a| since no integer larger than |a| divides a. But also |a| | a, and |a| | 0
since any nonzero integer divides 0. Hence |a| is the gcd of a and 0.

8.

9. No, ab need not divide c. For one example, note that 4 | 12 and 6 | 12, but 4 · 6 = 24 does not
divide 12.

10.

11.

12. (a) False. (ab, a) is always at least a since a | ab and a | a.

(b) False. For example, (2, 3) = 1 and (2, 9) = 1, but (3, 9) = 3.

(c) False. For example, let a = 2, b = 3, and c = 9. Then (2, 3) = 1 = (2, 9), but (2 · 3, 9) = 3.

11.
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Given integers a and c with c ≠ 0. Apply Theorem 1.1 with b = |c| to get a = |c| . q + r where 0 
≤ r < |c|. Let q = q0 if c > 0 and q = –q0 if c < 0. Then a = cq + r as claimed. The uniqueness is 
proved as in Theorem 1.1. 

If b | a then a = bx for some integer x. Then a = (–b)(–x) so that (–b) | a. The converse follows 
similarly. 

Answered in the text. 

(a) Given b = ax and c = ay for some integers x, y, we find b + c = ax + ay = a(x + y). 
Since x + y is an integer, conclude that a | (b + c). 

(b) Given x and y as above we find br + ct = (ax)r + (ay)t = a(xr + yt) using the associative 
and distributive laws. Since xr + yt is an integer we conclude that a | (br + ct). 

Given b = ax and d = cy for some integers x, y, we have bd = (ax)(cy) = (ac)(xy). Then ac | bd 
because xy is an integer. 

If d = (n, n + 1) then d | n and d | (n + 1). Since (n + 1) – n = 1 we conclude that d | 1. (Apply 
Exercise 4(b).) This implies d = 1, since d > 0. 

Since a | a and a | 0 we have a | (a, 0). If (a, 0) = 1 then a | 1 forcing a = ±1. 

(a) 1 or 2 (b) 1, 2, 3 or 6. Generally if d = (n, n + c) then d | n and d | (n + c). 
Since c is a linear combination of n and n+c, conclude that d | c. 

0
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14.

15. (a) This is a calculation.

(b) At the first step, for example, by Exercise 13 we have (a, b) = (524, 148) = (148, 80) = (b, r).
The same applies at each of the remaining steps. So at the final step, we have (8, 4) = (4, 0);
putting this string of equalities together gives

(524, 148) = (148, 80) = (80, 68) = (68, 12) = (12, 8) = (8, 4) = (4, 0).

But by Example 4, (4, 0) = 4, so that (524, 148) = 4.

(c) 1003 = 56 · 17 + 51, 56 = 51 · 1 + 5, 51 = 5 · 10 + 1, 5 = 1 · 5 + 0. Thus (1003, 56) = (1, 0) = 1.

(d) 322 = 148 · 2 + 26, 148 = 26 · 5 + 18, 26 = 18 · 1 + 8, 18 = 8 · 2 + 2, 8 = 2 · 4 + 0, so that
(322, 148) = (2, 0) = 2.

(e) 5858 = 1436 · 4 + 114, 1436 = 114 · 12 + 68, 114 = 68 · 1 + 46, 68 = 46 · 1 + 22, 46 = 22 · 2 + 2,
22 = 2 · 11 + 0, so that (5858, 1436) = (2, 0) = 2.

(f) 68 = 148− (524− 148 · 3) = −524 + 148 · 4.

(g) 12 = 80− 68 · 1 = (524− 148 · 3)− (−524 + 148 · 4) · 1 = 524 · 2− 148 · 7.

(h) 8 = 68− 12 · 5 = (−524 + 148 · 4)− (524 · 2− 148 · 7) · 5 = −524 · 11 + 148 · 39.

(i) 4 = 12− 8 = (524 · 2− 148 · 7)− (−524 · 11 + 148 · 39) = 524 · 13− 148 · 46.

(j) Working the computation backwards gives 1 = 1003 · 11− 56 · 197.

16.

17. Since b | c, we know that c = bt for some integer t. Thus a | c means that a | bt. But then Theorem
1.4 tells us, since (a, b) = 1, that a | t. Multiplying both sides by b gives ab | bt = c.

18.

19.

1.2 Divisibility 3

13. (a) Suppose c | a and c | b. Write a = ck and b = cl. Then a = bq + r can be rewritten
ck = (cl)q + r, so that r = ck − clq = c(k − lq). Thus c | r as well, so that c is a common
divisor of b and r.

(b) Suppose c | b and c | r. Write b = ck and r = cl, and substitute into a = bq + r to get
a = ckq + cl = c(kq + l). Thus c | a, so that c is a common divisor of a and b.

(c) Since (a, b) is a common divisor of a and b, it is also a common divisor of b and r, by part (a).
If (a, b) is not the greatest common divisor (b, r) of b and r, then (a, b) > (b, r). Now, consider
(b, r). By part (b), this is also a common divisor of (a, b), but it is less than (a, b). This is a
contradiction. Thus (a, b) = (b, r).
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By Theorem 1.3, the smallest positive integer in the set S of all linear combinations of a and b is 
exactly (a, b). 

(a) (6, 15) = 3 (b) (12, 17)=1. 

Let a = da1 and b = db1. Then a1 and b1 are integers and we are to prove: (a1, b1) = l. By 
Theorem 1.3 there exist integers u, v such that au + bv = d. Substituting and cancelling we find 
that a1u + b1v = l. Therefore any common divisor of a1 and b1 must also divide this linear 
combination, so it divides 1. Hence (a1, b1) = 1. 

Let d = (a, b) so there exist integers x, y with ax + by = d. Note that cd | (ca, cb) since cd 
divides ca and cb. Also cd = cax + cby so that (ca, cb) | cd. Since these quantities are positive we 
get cd = (ca, cd). 

Let d = (a, b). Since b + c = aw for some integer w, we know c is a linear combination of a and b 
so that d | . But then d | (b ) = 1 forcing d = 1. Similarly ( ) = 1.  c  c ,  c ,a
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23.

24.

25.

26.

27.

28. Suppose the integer consists of the digits anan−1 . . . a1a0. Then the number is equal to

n∑
k=0

ak10k =
n∑

k=0

ak(10k − 1) +
n∑

k=0

ak.

Now, the first term consists of terms with factors of the form 10k − 1, all of which are of the form
999 . . . 99, which are divisible by 3, so that the first term is always divisible by 3. Thus

∑n
k=0 ak10k

is divisible by 3 if and only if the second term
∑n

k=0 ak is divisible by 3. But this is the sum of the
digits.

29. This is almost identical to Exercise 28. Suppose the integer consists of the digits anan−1 . . . a1a0.
Then the number is equal to

n∑
k=0

ak10k =
n∑

k=0

ak(10k − 1) +
n∑

k=0

ak.

Now, the first term consists of terms with factors of the form 10k − 1, all of which are of the form
999 . . . 99, which are divisible by 9, so that the first term is always divisible by 9. Thus

∑n
k=0 ak10k

is divisible by 9 if and only if the second term
∑n

k=0 ak is divisible by 9. But this is the sum of the
digits.
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21.
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Let d = (a, b) and e = (a, b + at). Since b + at is a linear combination of a and b, d | (b + at) so 
that d | e. Similarly since b = a(–t) + (b + at) is a linear combination of a and b + at we know e 
| b so that e | d. Therefore d = e. 

Answered in the text. 

Let d = (a, b, c). Claim: (a, d) = l. [Proof: (a, d) divides d so it also divides c. Then (a, d) | (a, c) 
= 1 so that (a, d)= 1.] Similarly (b, d)= 1. But d | ab and (a, d) = 1 so that Theorem 1.5 implies 
that d | b. Therefore d = (b. d) = 1. 

Define the powers bn recursively as follows: b1 = b and for every n ≥ 1, bn + 1 = b . bn. By 
hypothesis (a, b1) = 1. Given k ≥ 1, assume that (a, bk) = 1. Then (a, bk + 1) = (a, b . bk) = 1 by 
Exercise 24. This proves that (a, bn) = 1 for every n ≥ 1. 

Let d = (a, b). If ax + by = c for some integers x, y then c is a linear combination of a and b so 
that d | c. Conversely suppose c is given with d | c, say c = dw for an integer w. By Theorem 1.3 
there exist integers u, v with d = au + bv. Then c = dw = auw + bvw and we use x = uw and  
y = vw to solve the equation. 

(a) Given au + bv = 1 suppose d = (a, b). Then d | a and d | b so that d divides the linear 
combination au + bv = 1. Therefore d = 1. 

(b) There are many examples. For instance if a = b = d = u = v a, b) = (1, 1)= 1 
while d = au + bv = 1 + 1 = 2. 

Let d = (a, b) and express a = da1 and b = db1 for integers a1, b1. By Exercise 16, (a1, b1) = 1. 
Since a | c we have c = au = da1u for some integer u. Similarly c = bv = db1v for some integer v. 
Then a1u = c/d = b1V and Theorem 1.5 implies that a1 | v so that v = a1w for some integer w. 
Then c = da1b1w so that cd = d2a1b1w = abw and ab | cd. 

Answered in the text. 

 = 1 then (
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31. (a) [6, 10] = 30; [4, 5, 6, 10] = 60; [20, 42] = 420, and [2, 3, 14, 36, 42] = 252.

(b) Suppose ai | t for i = 1, 2, . . . , k, and let m = [a1, a2, . . . , ak]. Then we can write t = mq + r
with 0 ≤ r < m. For each i, ai | t by assumption, andai | m since m is a common multiple
of the ai. Thus ai | (t −mq) = r. Since ai | r for each i, we see that r is a common multiple
of the ai. But m is the smallest positive integer that is a common multiple of the ai; since
0 ≤ r < m, the only possibility is that r = 0 so that t = mq. Thus any common multiple of
the ai is a multiple of the least common multiple.

32. First suppose that t = [a, b]. Then by definition of the least common multiple, t is a multiple of
both a and b, so that t | a and t | b. If a | c and b | c, then c is also a common multiple of a and b,
so by Exercise 31, it is a multiple of t so that t | c.
Conversely, suppose that t satisfies the conditions (i) and (ii). Then since a | t and b | t, we see that
t is a common multiple of a and b. Choose any other common multiple c, so that a | c and b | c.
Then by condition (ii), we have t | c, so that t ≤ c. It follows that t is the least common multiple
of a and b.

33. Let d = (a, b), and writea = da1 and b = db1. Write m = ab
d = da1db1

d = da1b1. Since a and b are
both positive, so is m, and since m = da1b1 = (da1)b1 = ab1 and m = da1b1 = (db1)a1 = ba1, we
see that m is a common multiple of a and b. Suppose now that k is a positive integer with a | k
and b | k. Then k = au = bv, so that k = da1u = db1v. Thus k

d = a1u = b1v. By Exercise 16,
(a1, b1) = 1, so that a1 | v, say v = a1w. Then k = db1v = db1a1w = mw, so that m | k. Thus
m ≤ k. It follows that m is the least common multiple. But by construction, m = ab

(a,b) = ab
d .

34. (a) Let d = (a, b). Since d | a and d | b, it follows that d | (a + b) and d | (a − b), so that d is a
common divisor of a + b and a − b. Hence it is a divisor of the greatest common divisor, so
that d = (a, b) | (a+ b, a− b).

(b) We already know that (a, b) | (a+b, a−b). Now suppose that d = (a+b, a−b). Then a+b = dt
and a − b = du, so that 2a = d(t + u). Since a is even and b is odd, d must be odd. Since
d | 2a, it follows that d | a. Similarly, 2b = d(t− u), so by the same argument, d | b. Thus d is
a common divisor of a and b, so that d | (a, b). Thus (a, b) = (a+ b, a− b).

(c) Suppose that d = (a+ b, a− b). Then a+ b = dt and a− b = du, so that 2a = d(t+ u). Since
a and b are both odd, a+ b and a− b are both even, so thatd is even. Thus a = d

2 (t+ u), so

that d
2 | a. Similarly, d

2 | b, so that d
2 = (a+b,a−b)

2 | (a, b) | (a+ b, a− b). Thus (a, b) = (a+b,a−b)
2

or (a, b) = (a + b, a − b). But since (a, b) is odd and (a + b, a − b) is even, we must have
(a+b,a−b)

2 = (a, b), or 2(a, b) = (a+ b, a− b).

5
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Let S = {a1x1 + a2x2 + … + anxn : x1 x2, ..., x are integers}. As in the proof of Theorem 1.3, S 
does contain some positive elements (for if aj ≠ 0 then aj

2 ∈ S is positive). By the Well Ordering 
Axiom this set S contains a smallest positive element, which we call t. Suppose t = a1u1 + a2u2 + 
… + anun for some integers uj. 
Claim. t = d. The first step is to show that t | a . By the division algorithm there exist integers q 
and r such that a1 = tq + r with 0 ≤ r < t. Then r = a1 – tq = a1(1 – u1q) + a2(–u2q) + … +  
an(–unq) is an element of S. Since r < t (the smallest positive element of S), we know r is not 
positive. Since r ≥ 0 the only possibility is r = 0. Therefore a1 = tq and t | a1. Similarly we have
 t | aj for each j, and t is a common divisor of a1, a2,…, an. Then t ≤ d by definition. 

On the other hand d divides each aj so d divides every integer linear combination of a1, a2,..., an. 
In particular, d | t. Since t > 0 this implies that d ≤ t and therefore d = t. 

1.2 Divisibility

1
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