
Chapter 1

1. a. false; b. false; c. true; d. false; e. false; f; false; g. false; h. true; i. true; j. false; k. true; l. false

3. Central processing unit (CPU), main memory (MM), and input/output devices.

5. An operating system monitors the overall activity of the computer and provides services. Some of these services

include memory management, input/output activities, and storage management.

7. In machine language the programs are written using the binary codes while in high-level language the program

are closer to the natural language. For execution, a high-level language program is translated into the machine

language while a machine language need not be translated into any other language.

9. Because the computer cannot directly execute instructions written in a high-level language, a compiler is needed

to translate a program written in high-level language into machine code.

11. Every computer directly understands its own machine language. Therefore, for the computer to execute a

program written in a high-level language, the high-level language program must be translated into the

computer’s machine language.

13. In linking an object program is combined with other programs in the library, used in the program, to create the

executable code.

15. To find the weighted average of the four test scores, first you need to know each test score and its weight. Next,

you multiply each test score with its weight, and then add these numbers to get the average. Therefore,

1. Get testScore1, weightTestScore1

2. Get testScore2, weightTestScore2

3. Get testScore3, weightTestScore3

4. Get testScore4, weightTestScore4

5. weightedAverage = testScore1 * weightTestScore1 +

 testScore2 * weightTestScore2 +

 testScore3 * weightTestScore3 +

 testScore4 * weightTestScore4;

17. To find the price per square inch, first we need to find the area of the pizza. Then we divide the price of the

pizza by the area of the pizza. Let radius denote the radius and area denote the area of the circle, and

price denote the price of pizza. Also, let pricePerSquareInch denote the price per square inch.

 a. Get radius

 b. area = π * radius * radius

 c. Get price

 d. pricePerSquareInch = price / area

19. To calculate the area of a triangle using the given formula, we need to know the lengths of the sides―a, b, and

c―of the triangle. Next, we calculate s using the formula:

 s = (1/2)(a + b + c)

 and then calculate the area using the formula:

 area = sqrt(s(s-a)(s-b)(s-c))

where sqrt denotes the square root.

The algorithm, therefore, is:

C++ Programming Program Design Including Data Structures 6th Edition Malik Solutions Manual
Full Download: http://alibabadownload.com/product/c-programming-program-design-including-data-structures-6th-edition-malik-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/c-programming-program-design-including-data-structures-6th-edition-malik-solutions-manual/

a. Get a, b, c

b. s = (1/2)(a + b + c)

c. area = sqrt(s(s-a)(s-b)(s-c))

The information needed to calculate the area of the triangle is the lengths of the sides of the triangle.

21. Suppose that numOfPages denoes the number of pages to be faxed and billingAmount denotes the total

charges for the pages faxed. To calculate the total charges, you need to know the number of pages faxed.

If numOfPages is less than or equal to ten, the billing amount is services charges plus (numOfPages ×

0.20); otherwise, billing amount is service charges plus 10 × 0.20 plus (numOfPages - 10) × 0.10.

That is,

You can now write the algorithm as follows:

a. Get numOfPages.

b. Calculate billing amount using the formula:

if (numOfPages is less than or equal to 10)

 billingAmount = 3.00 + (numOfPages × 0.20);

otherwise

 billingAmount = 3.00 + 10 × 0.20 + (numOfPages - 10) × 0.10;

23. Suppose averageTestScore denotes the average test score, highestScore denotes the highest test

score, testScore denotes a test score, sum denote the sum of all the test scores, and count denotes the

number of students in class, and studentName denotes the name of a student.

a. First you design an algorithm to find the average test score. To find the average test score, first you need to

count the number of students in the class and add the test score of each student. You then divide the sum by

count to find the average test score. The algorithm to find the average test score is as follows:

i. Set sum and count to 0.

ii. Repeat the following for each student in class.

1. Get testScore

2. Increment count and update the value of sum by adding the current test score to sum.

iii. Use the following formula to find the average test score.

if (count is 0)

 averageTestScore = 0;

otherwise

 averageTestScore = sum / count;

b. The following algorithm determines and prints the names of all the students whose test score is below the

average test score.

 Repeat the following for each student in class:

i. Get studentName and testScore

ii.

if (testScore is less than averageTestScore)

 print studentName

c. The following algorithm determines and highest test score

i. Get first student’s test score and call it highestTestScore.

ii. Repeat the following for each of the remaining student in class

1. Get testScore

2.

if (testScore is greater than highestTestScore)

 highestTestScore = testScore;

d. To print the names of all the students whose test score is the same as the highest test score, compare the test

score of each student with the highest test score and if they are equal print the name. The following

algorithm accomplishes this

 Repeat the following for each student in class:

i. Get studentName and testScore

ii.

if (testScore is equal to highestTestScore)

 print studentName

You can use the solutions of the subproblems obtained in parts a to d to design the main algorithm as follows:

1. Use the algorithm in part a to find the average test score.

2. Use the algorithm in part b to print the names of all the students whose score is below the average test

score.

3. Use the algorithm in part c to find the highest test score.

4. Use the algorithm in part d to print the names of all the students whose test score is the same as the highest

test score

Chapter 2

1. a. false; b. false; c. false; d. true; e. true; f. false; g. true; h. true; i. false; j. true; k. false

3. b, d, e

5. The identifiers firstName and FirstName are not the same. C++ is case sensitive. The first letter of

firstName is lowercase f while the first character of FirstName is uppercase F. So these identifiers are

different

7. a. 3

b. Not possible. Both the operands of the operator % must be integers. Because the second operand, w, is a

floating-point value, the expression is invalid.

c. Not possible. Both the operands of the operator % must be integers. Because the first operand, which is y +

w, is a floating-point value, the expression is invalid .

d. 38.5

e. 1

f. 2

g. 2

h. 420.0

9. 7

11. a and c are valid

13. a. 32 * a + b

b. '8'

c. "Julie Nelson"

d. (b * b – 4 * a * c) / (2 * a)

e. (a + b) / c * (e * f) – g * h

f. (–b + (b * b – 4 * a * c)) / (2 * a)

15. x = 28

y = 35

z = 1

w = 22.00

t = 6.5

17. a. 0.50

b. 24.50

c. 37.6

d. 8.3

e. 10

f. 38.75

19. a and c are correct

21. a. int num1;

 int num2;

b. cout << "Enter two numbers separated by spaces." << endl;

c. cin >> num1 >> num2;

d. cout << "num1 = " << num1 << "num2 = " << num2

 << "2 * num1 – num2 = " << 2 * num1 – num2 << endl;

23. A correct answer is:

#include <iostream>

using namespace std;

const char STAR = '*';

const int PRIME = 71;

int main()

{

 int count, sum;

 double x;

 int newNum; //declare newNum

 count = 1;

 sum = count + PRIME;

 x = 25.67; // x = 25.67;

 newNum = count * 1 + 2; //newNum = count * ONE + 2;

 sum = sum + count; //sum + count = sum;

 x = x + sum * count; // x = x + sum * COUNT;

 cout << " count = " << count << ", sum = " << sum

 << ", PRIME = " << PRIME << endl;

 return 0;

}

25. An identifier must be declared before it can be used.

27. a. x *= 2;

b. x += y - 2;

c. sum += num;

d. z *= x + 2;

e. y /= x + 5;

29.

a b c

a = (b++) + 3; 9 7 und

c = 2 * a + (++b); 9 8 26

b = 2 * (++c) – (a++); 10 45 27

31. (The user input is shaded.)

a = 25

Enter two integers: 20 15

The numbers you entered are 20 and 15

z = 45.5

Your grade is A

The value of a = 65

33.

#include <iostream>

#include <string>

using namespace std;

const double X = 13.45;

const int Y = 34;

const char BLANK = ' ';

int main()

{

 string firstName, lastName;

 int num;

 double salary;

 cout << "Enter first name: ";

 cin >> firstName;

 cout << endl;

 cout << "Enter last name: ";

 cin >> lastName;

 cout << endl;

 cout << "Enter a positive integer less than 70: ";

 cin >> num;

 cout << endl;

 salary = num * X;

 cout << "Name: " << firstName << BLANK << lastName << endl;

 cout << "Wages: $" << salary << endl;

 cout << "X = " << X << endl;

 cout << "X + Y = " << X + Y << endl;

 return 0;

}

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-1

Chapter 2

Basic Elements of C++

At a Glance

Instructor’s Manual Table of Contents

 Overview

 Objectives

 Teaching Tips

 Quick Quizzes

 Class Discussion Topics

 Additional Projects

 Additional Resources

 Key Terms

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-2

Lecture Notes

Overview

Chapter 2 teaches your students the basics of C++. Learning a programming language is

similar to learning to be a chef or learning to play a musical instrument. All three

require direct interaction with the tools; in other words, you cannot become proficient

by simply reading books on the topics. In this chapter, your students will begin

acquiring a fundamental knowledge of C++ by learning about data types, functions,

identifiers, assignment statements, arithmetic operations, and input/output operations.

They will then write and test programs using these concepts to verify their knowledge

of the material.

Objectives

In this chapter, the student will:

 Become familiar with the basic components of a C++ program, including functions,

special symbols, and identifiers

 Explore simple data types

 Discover how to use arithmetic operators

 Examine how a program evaluates arithmetic expressions

 Learn what an assignment statement is and what it does

 Become familiar with the string data type

 Discover how to input data into memory using input statements

 Become familiar with the use of increment and decrement operators

 Examine ways to output results using output statements

 Learn how to use preprocessor directives and why they are necessary

 Learn how to debug syntax errors

 Explore how to properly structure a program, including using comments to document a

program

 Learn how to write a C++ program

Teaching Tips

Introduction

1. Define the terms computer program and programming.

2. Use the recipe analogy to give students an idea of the process of programming.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-3

A Quick Look at a C++ Program

1. Note that every C++ program must have a function called main. Use Example 2-1 to

illustrate a basic main function. Walk through this example and point out the meaning

of each line.

2. Discuss the purpose of an output statement and what it produces.

3. Point out the use of comments.

4. Briefly introduce the #include directive.

5. Use Figure 2-1 to describe the various parts of a C++ program.

6. Use Figures 2-2 and 2-3 to describe how memory is allocated and used to store values.

The Basics of a C++ Program

1. Explain that a C++ program is essentially a collection of one or more subprograms,

called functions. Note that although many functions are predefined in the C++ library,

programmers must learn how to write their own functions to accomplish specific tasks.

2. Define the terms syntax rules and semantic rules as they relate to a programming

language and explain the difference between the two.

Teaching

Tip

Emphasize that compilers check for syntax but not semantic errors. Give an

example of each type of error.

Comments

1. Use the program in Example 2-1 to describe the use and importance of comments.

Stress that comments are for the reader, not for the compiler.

2. Describe the two forms of comments shown in the textbook.

Teaching

Tip

The importance of documenting a program cannot be underestimated. It is highly

important for ensuring that the next programmer to be responsible for

maintaining the code will be able to understand what the code is supposed to do.

Teaching

Tip

Reassure students that although most of this example probably looks confusing,

they will soon understand it and be comfortable with it.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-4

Special Symbols

1. Explain that the C++ programming language consists of individual units called tokens,

and these are divided into special symbols, word symbols, and identifiers.

2. Go over some of the special symbols in C++, including mathematical symbols,

punctuation marks, the blank symbol, and double characters that are regarded as a

single symbol.

Reserved Words (Keywords)

1. Discuss the word symbols, or keywords, used in C++, using Appendix A as a guide.

Emphasize that C++ keywords are reserved and cannot be redefined for any other

purpose with a program.

Identifiers

1. Define the term identifier as a name for something, such as a variable, constant, or

function.

2. Discuss the rules for naming identifiers in C++. Also note that C++ is a case-sensitive

language.

3. Use Table 2-2 to review the rules of identifier naming.

Teaching

Tip

Discuss the difference between C++ conventions and rules. For example, it is a

rule that a mathematical symbol cannot be used in an identifier name. However,

it is a convention to begin an identifier with a lowercase letter.

Whitespaces

1. Explain that whitespaces (which include blanks, tabs, and newline characters) are used

to separate special symbols, reserved words, and identifiers.

Data Types

1. Explain that C++ categorizes data into different types in order to manipulate the data in

a program correctly. Although it may seem cumbersome at first to be so type-conscious,

emphasize that C++ has these built-in checks to guard against errors.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-5

Teaching

Tip

Explain that C++ is called a strongly typed language because it checks for

operations between inconsistent data types. This results in more robust and error-

free programs. Demonstrate how C++ checks for data types with a simple

program that attempts to add a string and a numeric value.

2. Define the term data type as a set of values together with a set of operations.

3. Mention that C++ data types fall into three categories: simple data types, structured data

types, and pointers. Only the first type is discussed in this chapter.

Simple Data Types

1. Describe the three categories of simple data types in C++: integral, floating-point, and

enumeration.

2. Mention the nine categories of integral data types. Explain why C++ (and many other

languages) has so many categories of the same data type. In addition, discuss the rules

involving the use of integral types.

4. Explain the purpose of the bool data type.

5. Discuss the char data type, including its primary uses. Mention commonly used ASCII

characters and their predefined ordering. Explain that a char data type is enclosed in

single quotation marks, and note that only one symbol may be designated as a character.

6. Use Table 2-2 to summarize the three simple data types. Point out the difference in the

amount of memory storage required, but inform students that this is system-dependent.

Floating-Point Data Types

1. Use Table 2-3 to explain how C++ represents real, or floating-point, numbers. Mention

the three categories of data types to represent real numbers (float, double, and

long double), and explain when to use each type.

2. Define the terms precision, single precision, and double precision.

Teaching

Tip

Demonstrate how to find the values of float and double on a particular

system by running the program with the header file <cfloat> in Appendix F.

Encourage students to try running this program on their own computers and

comparing the results.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-6

Quick Quiz 1

1. What is an enumeration type?

Answer: C++’s method for allowing programmers to create their own simple data types

2. The maximum number of significant digits in a number is called the

____________________.

Answer: precision

3. The data type ____________________ has only two values: true and false.

Answer: bool

4. The ____________________ data type, the smallest integral data type, is used to

represent characters.

Answer: char

Data Types and Variables

1. Explain that the declaration of a variable requires that the data type be specified.

Arithmetic Operators, Operator Precedence, and Expressions

1. Discuss the five arithmetic operators in C++ that are used to manipulate integral and

floating-type data types.

2. Define the terms unary and binary operators, and discuss the difference between them.

Order of Precedence

1. Review operator precedence rules, as C++ uses these rules when evaluating

expressions. Explain that parentheses can be used to override the order of operator

precedence.

Expressions

1. This section discusses integral and floating-point expressions in detail.

2. Describe the three types of arithmetic expressions in C++.

3. Use Examples 2-6 and 2-7 to clarify how C++ processes expressions.

Mixed Expressions

1. Discuss the two rules for evaluating mixed expressions and illustrate these rules in

practice using Example 2-8.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-7

Quick Quiz 2

1. A(n) ____________________ operator has only one operand.

Answer: unary

2. You can use ____________________ to override the order of precedence rules.

Answer: parentheses

3. Describe the associativity of arithmetic operators.

Answer: Unless there are parentheses, the associativity of arithmetic operators is said to

be from left to right.

4. An expression that has operands of different data types is called a(n)

____________________.

Answer: mixed expression

Type Conversion (Casting)

1. Explain how C++ avoids the hazards that result from implicit type coercion, which

occurs when one data type is automatically changed into another data type.

2. Illustrate the form of the C++ cast operator using Example 2-9.

Teaching

Tip

Students may feel a bit overwhelmed after the discussion of the static_cast

operator. Ask them to run the program, Example 2_9B.cpp, which is

available on the Course Technology Web site. They should experiment with

removing the static_cast operator from various statements, as well as

changing the variable values. Ask them to report on any unpredictable results.

string Type

1. Introduce the C++ data type string, which is a programmer-defined data type

available in the C++ library. Define a string as a sequence of zero or more characters.

2. Define the terms null string or empty string.

3. Discuss how to determine the length of a string, as well as the position of each character

in a string.

Teaching

Tip

Emphasize that the first position of a character in a string is 0, not 1. This will be

helpful when manipulating both strings and arrays later on the text.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-8

Variables, Assignment Statements, and Input Statements

1. Explain that data for a C++ program must be input into main memory. Mention the two-

step process to store data in the computer’s memory.

Allocating Memory with Constants and Variables

1. Emphasize that when allocating memory, the programmer must instruct the computer

which names to use for each memory location as well as what type of data to store in

those memory locations.

2. Define the term named constant and describe the syntax for declaring a named constant.

Use Example 2-11 to illustrate the naming conventions for named constants. Explain

why named constants are used in programs.

3. Define the term variable and use Example 2-12 to illustrate the syntax for declaring

single and multiple variables.

4. Give a formal definition of a simple data type.

Putting Data into Variables

1. Mention the two ways you can place data in a variable in C++.

Assignment Statement

1. Discuss the C++ assignment statement, including its syntax, variable initialization, and

the associativity rules of the assignment operator.

2. Step through Example 2-13 to illustrate how assignment statements operate in C++.

3. Use Example 2-14 to discuss the importance of doing a walk-through (tracing values

through a sequence of steps) when writing code.

Teaching

Tip

Building a table showing the values of variables at each step of the program is

very helpful for students to understand the nature of variables.

Saving and Using the Value of an Expression

1. Explain the steps involved in saving the value of an expression using Example 2-15.

Declaring and Initializing Variables

1. Explain that when a variable is declared, C++ may not automatically put a meaningful

value in it.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-9

2. Emphasize that it is a good practice to initialize variables while they are being declared.

Use one or more examples to illustrate how to do this in C++.

Input (Read) Statement

1. This section teaches your students to read data into variables from a standard input

device. Define and explain the use of the C++ object cin and the stream extraction

operator >>.

2. Step through Examples 2-16 through 2-18 to illustrate how to read in numeric and string

data.

Variable Initialization

1. Reiterate that a variable can be initialized either through an assignment statement or a

read statement. Explain why the read statement option is more versatile. Use Example

2-19 to illustrate both types of initialization.

Teaching

Tip

Programmers (and instructors) have various approaches or preferences regarding

variable declaration and initialization. Share your views on the topic. Do you

think the best approach is to always initialize variables for consistency? Do you

prefer initializing variables directly before the block of code that uses them, or

initializing them during declaration?

Quick Quiz 3

1. What is a named constant?

Answer: A memory location whose content is not allowed to change during program

execution

2. What is the syntax for declaring single or multiple variables?

Answer: dataType identifier, identifier, …;

3. True or False: If you refer to an identifier without declaring it, the compiler will

generate an error message.

Answer: True

4. A variable is said to be ____________________ the first time a value is placed in it.

Answer: initialized

Increment and Decrement Operators

1. Explain the purpose of the C++ increment (++) and decrement (--) operators.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-10

2. Discuss how pre and post versions of these operators affect the results in a program.

Use Example 2-20 to help explain the difference between these versions.

Teaching

Tip

Verify that students are comfortable with using pre- and post-

increment/decrement operators correctly, as it will be useful when working with

control structures.

Output

1. Review how the C++ output statement is coded with the cout object and stream

insertion operator (<<). Review the role of the endl manipulator in output statements

as well.

2. Discuss the use of escape characters (see Table 2-4), such as the newline character, to

format output. Demonstrate how to format output with Examples 2-21 through 2-26.

Teaching

Tip

Outputting strings can be confusing at first. Talk about the various methods to

deal with several lines of string output, and give your opinion as to the best

approach. Emphasize that the Enter key cannot be used to break up a long string

into two lines.

Preprocessor Directives

1. Explain the role of the preprocessor in C++. Discuss the use of header files and the

syntax for including them in a C++ program.

Teaching

Tip

Show your students some of the available operations in the <cmath> header.

Here is one Web site with a description: www.cplusplus.com/ref/cmath/.

namespace and Using cin and cout in a Program

1. Briefly explain the purpose of the namespace mechanism in ANSI/ISO Standard

C++. Discuss the std namespace and how it relates to the <iostream> header

file.

2. Review the using namespace std; statement and its usefulness in programs

using cin and cout statements.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-11

Using the string Data Type in a Program

1. Mention that the <string> header must be included in C++ programs using the

string data type.

Creating a C++ Program

1. Discuss the role of the function main in a C++ program. Go over the syntax of a main

function, including declaration, assignment, executable, and return statements. Mention

that named constant definitions and preprocessor directives are written before the main

function.

2. Spend some time stepping through Examples 2-27 through 2-29. Verify that students

understand each line of code in Example 2-29.

Debugging: Understanding and Fixing Syntax Errors

1. Review the sample program on Pages 85-86 and the compiler output that is generated

when compiling the program. Walk through the various syntax errors and explain how

each one should be fixed. Note that a syntax error on one line may be the cause of a

compiler error on the following line.

Teaching

Tip

Debugging is one of the most important skills a professional programmer

acquires. Stress to students the importance of learning how to debug their own

programs, including the verification of the results.

Program Style and Form

1. This section covers basic C++ syntax and semantic rules. Review these rules with your

students in order for them to feel comfortable writing a complete functioning C++

program.

Syntax

1. Remind students that syntax rules define what is legal and what is not.

2. Discuss some common syntax errors. Emphasize that syntax errors should be corrected

in the order in which the compiler lists them.

Use of Blanks

1. Discuss when blanks should and should not be used in a C++ program.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-12

Use of Semicolons, Brackets, and Commas

1. Explain the purpose and meaning of semicolons, brackets, and commas in C++

programs. Define the term statement terminator.

Semantics

1. Define the term semantics.

2. Reiterate that a program may run without compiler errors and still have semantic errors

that generate incorrect results. Use the example in the text to illustrate.

Naming Identifiers

1. Mention the conventions for naming identifiers, including self-documenting identifiers

and run-together words.

Prompt Lines

1. Define the term prompt lines.

2. Explain why well-written prompt lines are essential for user input.

Documentation

1. Discuss why documenting a program through comments is critical to understanding and

modifying the program at a later time.

Form and Style

1. Explain the purpose behind formatting and indentation conventions in source code. Use

Example 2-30 to illustrate.

Teaching

Tip

As with naming conventions, discuss your own preferences in terms of form and

style in programming. Use the programming examples at the end of the chapter

to talk about various stylistic elements. Discuss the value of the “art” of

programming.

Quick Quiz 4

1. True or False: The semantic rules of a language tell you what is legal and what is not

legal.

Answer: False

2. The semicolon is also called the ____________________.

Answer: statement terminator

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-13

3. How can you make run-together words easier to understand?

Answer: Capitalizing the beginning of each new word; or inserting an underscore before

each new word

4. Why are comments important in a program?

Answer: A well-documented program is easier to understand and modify, even a long

time after you originally wrote it. You use comments to document programs. Comments

should appear in a program to explain the purpose of the program, identify who wrote

it, and explain the purpose of particular statements.

More on Assignment Statements

1. Define the terms simple assignment statement and compound assignment statement.

2. Define the C++ compound operators (+=, -=, *=, /=, and %=) and explain how and why

compound assignment statements are used in C++ programs. Use Example 2-31 to

illustrate this.

3. Step through the “Convert Length” and “Make Change” Programming Examples to

help the students consolidate all the information from this chapter.

Class Discussion Topics

1. As mentioned in this chapter, C++ predefined identifiers such as cout and cin can be

redefined by the programmer. However, why is it not wise to do so?

2. The text mentioned that the char data type can be cast into an int. What are some

possible uses of this functionality?

Additional Projects

1. Learn and report on various compiler errors by modifying one or two of the programs in

this chapter. Try to compile the program. What happens when you do not initialize a

value for a named constant? What are the error messages when you use a numeric or

string constant in an expression without first giving it a value? Finally, what happens

when you initialize a char data type with a character enclosed in double quotes?

2. Use one of the programs in this chapter to test for invalid user input. The program

should compile with no errors. What happens when you enter an unexpected value

(such as an incorrect data type) when prompted for user input? Test with several sets of

invalid data and document your findings.

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-14

Additional Resources

1. C plus plus:

http://en.wikipedia.org/wiki/C_Plus_Plus

2. Basic Input/Output:

www.cplusplus.com/doc/tutorial/basic_io.html

3. C++ Programming Style Guidelines:

http://geosoft.no/development/cppstyle.html

4. Strong vs. Weak Typing:

www.artima.com/intv/strongweak.html

Key Terms

 Arithmetic expression: an expression constructed using arithmetic operators and

numbers

 Assignment operator: =; assigns whatever is on the right side to the variable on the left

side

 Associativity: the associativity of arithmetic operators is said to be from left to right

 Binary operator: an operator that has two operands

 Cast operator (type conversion, type casting): used to explicitly convert one data type

to another data type

 Character arithmetic: arithmetic operation on char data

 Collating sequence: a predefined ordering for the characters in a set

 Compound assignment statement: statements that are used to write simple assignment

statements in a more concise notation

 Computer program: a sequence of statements whose objective is to accomplish a task

 Data type: a set of values together with a set of operations

 Declaration statements: statements that are used to declare things, such as variables

 Decrement operator: --; decreases the value of a variable by 1

 Double precision: values of type double

 Enumeration: a user-defined data type

 Executable statements: statements that perform calculations, manipulate data, create

output, accept input, and so on

 Floating-point: a data type that deals with decimal numbers

 Floating-point (decimal) expression: an expression in which all operands in the

expression are floating-point numbers

 Floating-point notation: a form of scientific notation used to represent real numbers

 Function (subprogram): a collection of statements; when activated, or executed, it

accomplishes something

 Identifier: a C++ identifier consists of letters, digits, and the underscore character (_); it

must begin with a letter or underscore

 Implicit type coercion: when a value of one data type is automatically changed to

another data type

 Increment operator: ++; increases the value of a variable by 1

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-15

 Initialized: the first time a value is placed in the variable

 Input (read) statement: a statement that places data into variables using cin and >>

 Integral: a data type that deals with integers, or numbers, without a decimal part

 Integral expression: an expression in which all operands are integers

 Keyword: a reserved word

 Mixed expression: an expression that has operands of different data types

 Named constant: a memory location whose content is not allowed to change during

program execution

 Null (empty) string: a string containing no characters

 Operands: numbers appearing in an arithmetic expression

 Output statement: an output on the standard output device via cout and <<

 Post-decrement: has the syntax variable--

 Post-increment: has the syntax variable++

 Precision: the maximum number of significant digits

 Pre-decrement: has the syntax –-variable

 Predefined (standard) function: a function that is already written and provided as part

of the system

 Pre-increment: has the syntax ++variable

 Preprocessor: a program that carries out preprocessor directives

 Programming: the process of planning and creating a program

 Programming language: a set of rules, symbols, and special words

 Prompt lines: executable statements that inform the user what to do

 Reserved words (keywords): word symbols in a programming language that cannot be

redefined in any program

 Run-together word: an identifier that is composed of two or more words that are

combined without caps or underscores

 Self-documenting identifiers: identifiers that describe the purpose of the identifier

through the name

 Semantic rules: rules that determine the meaning of the instructions

 Semantics: a set of rules that gives meaning to a language

 Simple assignment statement: a statement that uses only the assignment operator to

assign values to the variable on the left side of the operator

 Simple data type: the variable or named constant of that type can store only one value

at a time

 Single precision: values of type float

 Source code: consists of the preprocessor directives and program statements

 Source code file (source file): a file containing source code

 Statement terminator: the semicolon

 Stream extraction operator: >>; takes information from a stream and puts it into a

variable

 Stream insertion operator: <<; takes information from a variable and puts it into a

stream

 String: a sequence of zero or more characters

 Syntax rules: rules that describe which statements (instructions) are legal, or accepted

by the programming language, and which are not legal

 Token: the smallest individual unit of a program written in any language

 Unary operator: an operator that has only one operand

 Variable: a memory location whose content may change during program execution

C++ Programming: Program Design Including Data Structures, Sixth Edition 2-16

 Walk-through: the process of tracing values through a sequence

C++ Programming Program Design Including Data Structures 6th Edition Malik Solutions Manual
Full Download: http://alibabadownload.com/product/c-programming-program-design-including-data-structures-6th-edition-malik-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/c-programming-program-design-including-data-structures-6th-edition-malik-solutions-manual/

	ODD chapter 1 and Chapter 2.pdf (p.1-7)
	9781133526322_IM_ch02.pdf (p.8-23)

